
Tools and Services
Search Service, RWiki, Portal

Customization and Developing Tools

Dr Ian Boston
CTO,

CARET, University of Cambridge

1Monday, 5 November 2007

Good morning, my name is Ian Boston, I am CTO for Caret, University of Cambridge. Over the
next 40 minutes I hope to give you a technical introduction to Sakai, ending with a quick look
a the structure of some tools.

Technical Presentation
• For a Developer: What is

Sakai ?

• Why Sakai.

• The Stack

• The Portal

• Examples of a Service

• Examples of a Tool

• For a User: “Introduction to
Sakai”, Copland Lecture
Theatre, now.

2Monday, 5 November 2007

This is a technical presentation, if you are not a technical type, then you are very welcome to
stay, and I hope I don’t bore or confuse you too much.

Peter Knoop is doing a more user oriented presentation in parallel to this one.

So I am going to start with why take and interest in Sakai, look at its conceptual architecture
or stack, have a look a the portal, and then look at some examples of bits of the stack.

Why Sakai ?

• Why Open Source ?

• Why Sakai ?

“Open source offers the opportunity to
benefit from the work of others for
marginal cost. Each community has an
equilibrium state between ‘free-loaders’
and ‘workers’ driven largely by its
modularity and the value of each module.
High value open source requires that that
equilibrium is maintained. Sakai is a
modular environment that supports the
participation of a large number of
developers”

3Monday, 5 November 2007

Why Sakai, Why Open source ?

There are many reasons to use an Open Source product.
Open source communities consist of 2 groups, freeloaders and workers.

Freeloaders, use the open source output with no problems, find it fits their use cases exactly
and never need to contribute to the community......... which is fantastic.

It shows the community has got a lot right.
On the other hand workers, of all forms, contribute something back to the community.

Equilibrium....
For the community to prosper it needs an equilibrium of freeloaders and workers, driven and
balanced by the modularity and value of the software.

Modular Architecture.....
Sakai has a modular architecture that continues to support contributions, of all sorts, from
many institutions world wide. Its equilibrium if firmly balanced towards many parallel
contributions, of all types from many institutions.

The Stack

4Monday, 5 November 2007

Most applications has some sort of architectural stack.

Some will express this as a massively complex construction of all sorts of entity boxes,
interconnected with every standard under the sun.

Try to keep things simple...
With Sakai, we think of the stack as a simple stack of concepts built on-top of other
standards. We do get horribly complex at times, but in general there are still big boxes into
which we can place the complexity. You might call it separation of concerns.

The Technology Stack

• Its a Web Application

• It uses Java

• It runs in Tomcat

• Database Backend

“Web applications are popular due
to the ubiquity of a client,

sometimes called a thin client. The
ability to update and maintain

Web applications without
distributing and installing

software on potentially thousands
of client computers is a key reason

for their popularity.” Wikipedia

5Monday, 5 November 2007

Sakai is a web application.
Pure and simple, that uses Java. Its not .NET Perl, PHP, Python.... although it can interoperate.

Orriginal reasons for choosing java
Java was originally chose since it gave those in the early project comfort that it would scale to
the size they needed.
Even now, mentioning J2EE containers, even the simpler webapp containers gives CIO’s a
feeling of security. To some extent this is true, although a solid underlaying architecture in
any language can be made to scale.

For Sakai the choice of Java made the choice of the J2EE web application model an obvious
one. Sakai is targeted at Apache tomcat, although the bindings are relatively weak. Since we
QA on Tomcat, and its free over 90% of institutions run on tomcat. For those that want a
commercial option, IBM are supporting IBM WebSphere.

Scalability is achieved by deploying multiple tomcat instances, each running a full copy of
Sakai. Sakai was written to operate in this mode and most institutions deploy in this mode.

Behind the tomcat instances there is a single database providing a transactional store of
information. This database can be MySQL or Oracle in production and we also support
HSQLDB for demo and developer modes. There are ports of Sakai to SQLServer, and there is
some interest in PostgresQL.

The full stack

• Portal

• Tool

• Service API

• Component

6Monday, 5 November 2007

Opening that stack up a bit, we find that a request passes through a portal living in a
webapp, is responded by a tool living in its webapp. That tool uses services that are
implemented as components. The components live inside a component manager. All
communicate via shared service API’s.

Core services...
The Sakai Framework provides a core set of services.... so you don’t have to. It also provides
the scaffolding around which this stack is constructed.

The framework gives the tool writer access to services like UserDirectory, Session, Portal,
Tool Configuration, ToolPlacement, Notification, Email, Events and so the list goes on.

Portal/Aggregator

• Aggregates and
Decorates content

• Dispatches to tools

• Portlets JSR-168

• Sakai Tools normal
webapps

7Monday, 5 November 2007

The portal’s job is put some UI scaffolding around the tools.

The portal in Sakai is not a full portal, it doesn’t support user level editing of the portlet
windows, as you see in uPortal or iGoogle, but it enables tools to be placed within some
simple UI scaffolding that supports navigation within the structure of the VLE.

There is nothing to say that the current portal structure is correct and we positively support
customization and modification of the portal.

The scaffolding that the portal produces is relevant to the context of the tool or portlets
being presented to the user. Once this scaffolding is in place, the portal code dispatches to
the tools. Either directly via JSR-168 and a Pluto 1.1. container embedded into the portal, or
indirectly via an Iframe.

In performing this dispatch the portal establishes and environment containing the sakai
framework, so that tools can use the Service API’s to invoke the framework services.

Sakai Tools

• A standard Java Web
Application

• with a Sakai
Request Filter

• to connect a
Component
Manager

“In Apple Macintosh
computer programming,
Component Manager was
one of many approaches to

sharing code that originated
on the pre-PowerPC

Macintosh. It was originally
introduced as part of

QuickTime, which remained
the part of Mac OS that used
it most heavily.” Wikipedia

8Monday, 5 November 2007

Describe the stack webapp, request filter component manager
A Sakai tool, like the portal, is a standard web application.

It has a number of configuration features that enable the portal to communicate with it.

It will have a named tool servlet, know to the portal that accepts named dispatches. Bound to
this it will have a Sakai Request filter that injects a reference to the Component Manager. It is
the component manager gives the tool access to implementations of the Service API’s that it
contains, and using a Servlet Request Filter ensures that the component manager and the
remainder of the sakai framework is available regardless of if the request came via the portal
or as a result of a direct request to the tool servlet..... either of which are valid.

Service API

• Tools use Serivce API’s

• So tools don’t have to re-
invent the wheel.

• Pure Java interfaces

• eg UserDirectoryService

“OASIS defines service as "a mechanism to enable access to one
or more capabilities, where the access is provided using a

prescribed interface and is exercised consistent with constraints
and policies as specified by the service description."” Wikipedia

9Monday, 5 November 2007

Service API’s are the communications contracts between the separated parts of Sakai.

They are nearly always pure java API’s and they are stored in the shared classloader that
everything can see.

For example, a UserDirectoryService can tell you who the current user is. The provision of
these services ensures that tools can build on the framework of services without having to
know or understand the details of the implementation.

Reimplementation
It also allows the teams responsible for the underlying services to improve and even re-
implement those services without impacting the tool writers.

Evolution of APIs and Services
The service apis in Sakai are still evolving, but they are the most stable area of sakai. Tools
that bind to them only need to evolve at the same slow pace regardless of the rate of change
of the underlying implementation.

Components

• Provide Implementations of
Service API’s

• Managed by a Component
Manager

• eg
BaseUserDirectoryService

“A component is an object written to a specification. It does not
matter what the specification is: COM, Java Beans, etc., as long as
the object adheres to the specification. It is only by adhering to the

specification that the object becomes a component and gains
features like reusability and so forth.” Wikipedia

10Monday, 5 November 2007

The Components in sakai most of the heavy lifting for core services.

Each component group or pack, is loaded by the component manager into an isolated class-
loader and exports its implementations to the component manager.

We tend to re-implement parts of the sakai component space at regular intervals

. There is a continuous programme of improvement and optimization of code in this space. If
we do this properly, and so far, in most cases we have, the tool writer should not need to do
any additional work.

For example in 2.5 we changed the storage implementation of Content Hosting Service, but
the resources tool didnt have to change any lines of code as a result.

A Simple
Tool

11Monday, 5 November 2007

Lets take a look a simple tool. Not the details of how to write a webapp, since there are
plenty of books on how to do that, but the details of how to make a webapp work in sakai.

A Simple HTTP Request
• Request handled by

Tomcat

• Sakai Request Filter

• Tool Webapp

• invokes Service API’s eg
sessionManager.getCurr
entSessionUser();

• HTML markup out

“Hypertext Transfer Protocol (HTTP)
is a communications protocol used to
transfer or convey information on the
World Wide Web. Its original purpose
was to provide a way to publish and

retrieve HTML hypertext pages.
Development of HTTP was

coordinated by the W3C (World Wide
Web Consortium) and the IETF

(Internet Engineering Task Force),
culminating in the publication of a
series of RFCs, most notably RFC

2616 (June 1999), which defines HTTP/
1.1, the version of HTTP in common

use.” Wikipedia

12Monday, 5 November 2007

So a HTTP request comes in. Its handled by Tomcat. Next we need to setup the Sakai
Framework environment. For this to happen we attache a Sakai Request Filter to both the URL
and the servlet by name handling the request.

The Sakai portal dispatches to tools based on their name, but direct URL access is valid so we
need to make certain that the sakai framework is present regardless of the path.

The Request Filter injects the Component manager and does some other setup, and then
control goes to the tool.
The tool processes the request, perhaps invoking services retrieved from the component
manager, and then it sends markup out as a response.... hopefully.

A Simple JSP WebApp

• Add a sakai
RequestFilter

• Map the filter over
the myjsptool.servlet
servlet

• Write your JSP pages,
now they have access
to Components.

<web-app>

 <!--

 Tool registration,

 requires that the tool definition in in tool

 -->

 <listener>

 <listener-class>

org.sakaiproject.util.ToolListener</listener-class>

 </listener>

 <!--

 The Sakai Request Hander

 -->

 <filter>

 <filter-name>sakai.request</filter-name>

 <filter-class>org.sakaiproject.util.RequestFilter</filter-class>

 </filter>

 <!--

 Mapped onto the jsp Handler

 -->

 <filter-mapping>

 <filter-name>sakai.request</filter-name>

 <servlet-name>myjsptool.servlet</servlet-name>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

 </filter-mapping>

 <servlet>
 <servlet-name>myjsptool.servlet</servlet-name>
 <servlet-class>
 uk.ac.cam.caret.sakai.WebappToolServlet
 </servlet-class>
 <load-on-startup>2</load-on-startup>^M
 </servlet>^M

</web-app>

13Monday, 5 November 2007

So If you have written a java tomcat web app, you know all of that except the request filter
bit. This is a web.xml file built with the App Builder Plugin for Eclipse. We have added a filter
named sakai.request, and we map that to the myjsptool.servlet so that requests, forward
dispatches and include dispatches all go through the filter.

The servlet, is a JSP dispatcher servlet that will just perform a second dispatch to the JSP
servlet..... so you can write JSP pages to create your tool.

Register as a Tool

• Add a ToolListener
and deploy a tools/
mytool.xml file

<web-app>

 <!--

 Tool registration,

 requires that the tool definition in in tool

 -->

 <listener>

 <listener-class>
org.sakaiproject.util.ToolListener</listener-class>

 </listener>

 <!--

 The Sakai Request Hander

 -->

 <filter>

 <filter-name>sakai.request</filter-name>

 <filter-class>org.sakaiproject.util.RequestFilter</filter-class>

 </filter>

 <!--

 Mapped onto the jsp Handler

 -->

 <filter-mapping>

 <filter-name>sakai.request</filter-name>

 <servlet-name>myjsptool.servlet</servlet-name>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

 </filter-mapping>

 <servlet>
 <servlet-name>myjsptool.servlet</servlet-name>
 <servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>
 <init-param>
 <param-name>fork</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>xpoweredBy</param-name>
 <param-value>false</param-value>
 </init-param>
 <load-on-startup>3</load-on-startup>
 </servlet>

</web-app>

14Monday, 5 November 2007

To make this a tool, we need to tell sakai about it. So we register a ToolListener. This reads
all the xml files under webapp/tools/*.xml and injects the tool definition into Sakai for the
portal to use. This registration includes the name of the servlet, so the portal can dispatch to
it.

Service API

Components and Component Manager

webapp

The Sakai Stack

RequestFilter

Servlet

jsp pages

Tool
Listener

15Monday, 5 November 2007

So this is our stack.

The request filter enables the servlet and jsp pages to communicate with sakai’s service apis.
A tool listener registers the tool with sakai.

View Technologies

• Anything you like....

• JSP

• JSF

• RSF

• Wicket

• Velocity

16Monday, 5 November 2007

Don’t like JSP.
Some people say its ugly and unsustainable.
There are alternatives. JSF.... well thats just hard JSP’s

RSF, developed at Cambridge, intended to be a rewrite of JSF to make it much easier to
develop tools.
Wicket from Apache. Similar to RSF, Apache top level project.
Velocity, both the heavyweight full life-cycle velocity as used by most of the older tools. Or
the light weight tempting only velocity.

You can choose your favorite,
But if you want to integrate well and give a uniform User Experience, then you should emit
uniform markup as the rest of sakai.

The Portal
Aggregator

17Monday, 5 November 2007

Tools were relatively simple. They don’t set the scene for the user as the portal owns most of
the screen decoration. The portals job is to provide the user with suitable navigation
appropriate for the context and provide a container which the tools can work within.

Screen Space

• Tool renders tool
space.

• Portal renders
container.

• Portal dispatches to
tool

Tool

Portal

Tool

18Monday, 5 November 2007

So the portal renders the header, site list for the user, and tool list for the site. It creates 2
containers in this instance, and then dispatches to the tool for the tool content.

Tool Containers Types

• IFrame

• JSR-168 Portlet

• Frameless

19Monday, 5 November 2007

The portal provides containers for the tools. It has three types, the dreaded iframe that we
have used for the past 4 years. JSR-168 portlets that render on a flat page and some
frameless tools that can work as fragment producers and co-exist with other tools.

Iframes are not ideal from an accessibility point of view, and generate some tensions between
the normal web users experience and sakai, however, there are many users who find tool
state persistence extremely useful as the switch between tools.

Customization
local css, per-site css,

templates, new render engines

20Monday, 5 November 2007

Sakai is open source and we have to support about 160 installations world wide at the
moment. We cant dictate look and feel like commercial vendors can, so Sakai portal is totally
reskinnable.

Most sites use CSS to change the look and feel, the the ones here are CSS based. You can
change the css on a site by site basis. You can go much further and replace the velocity
templates to where all the portal markup is held and completely re-configure the look and
feel.

If you don’t like velocity templates, you can re-write the render engine to use something else.
There is an RSF render engine in contrib.

The new osp portal in 2.5 uses an XSLT render engine.

An academic day

MySpaceGoogle

University
Website

Departmental
Website

Sakai
Gateway

Sakai
Worksite

Facebook

Log In

Library
Website

21Monday, 5 November 2007

But Sakai doesn’t exist in isolation. For new students arriving at a university, its a bewildering
experience, especially at Cambridge. The Student may have a Facebook, igoogle, myspace
home page. They might visit administrative university websites.

Confused they arrive at the Sakai landing page or gateway, they might log in. And if they are
lucky find their courses. But where they want to be is back in Facebook, with their friends.

External Applications
Facebook, iGoogle, PHP webapps, WIP

22Monday, 5 November 2007

So we are doing work to make Sakai accessible from within the students natural home page.
We have written a prototype Facebook Application, and iGoogle widget and some more
friendly pages.

We have done this all in PHP running on a different server from Sakai, but talking to Sakai
over REST based web services. Facebook users can see new content in sites they are members
of, we want to push the information that Sakai contains out into other spaces and
applications. This is work under development, but as with many PHP apps, its moving very
fast.

Spring and
Components

23Monday, 5 November 2007

The core of sakai is its component manager that contains components. We use Spring
Framework to deliver this functionality as is a capable Inversion of Control container.

IoC Code
 public void doInit() {

 SharedFilesystemJournalStorage sharedFilesystemJournalStorage = new
SharedFilesystemJournalStorageImpl();

 JournaledFSIndexStorageUpdateTransactionListener
journaledFSIndexStorageUpdateTransactionListener = new
JournaledFSIndexStorageUpdateTransactionListenerImpl();

 sequence.setDatasource(tds.getDataSource());

 sequence.setName("TransactionalIndexWorkerTest");

 journaledFSIndexStorageUpdateTransactionListener

 .setJournaledIndex(journaledFSIndexStorage);

 journaledFSIndexStorageUpdateTransactionListener

 .setJournalManager(journalManager);

 journaledFSIndexStorageUpdateTransactionListener

 .setJournalStorage(sharedFilesystemJournalStorage);

 sharedFilesystemJournalStorage.setJournalSettings(journalSettings);

 sequence.setDatasource(tds.getDataSource());

 mergeUpdateManager

 .addTransactionListener
(journaledFSIndexStorageUpdateTransactionListener);

 mergeUpdateManager.setSequence(sequence);

 journalManager = new JournalManagerImplementation();

 journalManager.setDatasource(tds.getDataSource());

 journalManager.setServerConfigurationService(serverConfigurationService);
 journalManager.setServerConfigurationService(mergeUpdateManager);
 }
 public void doSomethingWithNoIOC() {
 if (journalManager == null) {
 doInit();
 }
 journalManager.mergeJournals();
 }

Non IoC Initialization

publc void doSomethingIoC() {
 journalManager.mergeJournals();
}

private JournalManager journalManager;

public void setJournalManager(JournalManager journalManager) {
 this.journalManager = journalManager;
}

IoC Initialization

24Monday, 5 November 2007

Why IOC.

On the left is not IoC code. we have to manually inject everything to construct the code. We
also have to bind directly to Implementations, so it hard to change implementations. We
could use static factories, but that still means we have to do the injection under the covers.

So we use an IoC container, that according to a configuration file, injects the dependencies
we need. No binding to implementations. This enables us to separate the services into
independent components, leading to a component based architecture rather than an option
architecture.

IoC Startup

• IoC Container loads
bean configuration.

• IoC Container injects
dependencies

• IoC Container invokes
init’s

• IoC Container gets out
the way

“Inversion of control - also known
as IoC - is a concept, and an

associated set of programming
techniques, in which the control
flow is inverted compared to the

traditional interaction model
expressed in imperative style by a

series of procedure calls. Thus,
instead of the programmer
specifying, by the means of

function calls, a series of events to
happen during the lifetime of a
programme, they would rather

register desired responses to
particular happenings, and then let

some external entities take over
the control over the precise order

and set of events to happen.”
Wikipedia

25Monday, 5 November 2007

On Startup the IoC container loads the beans as configured, performs the injection of
dependencies and then invokes a number of post creation methods.

Once the architecture is wired up, the IoC container gets out of the way. Spring does bring
more than just pure IoC. This can be a blessing and a curse. It makes doing aspect based
interception much easier, so we can apply caching and transactions without having to change
the code... but it also complicates configuration, there is a balance to be maintained.

Spring Service Injection

• Configuration in XML
files

• Components
implement Service
API’s

• Consumers have
dependency Service
API’s injected by
Spring.

• Binding is to API’s not
Implementations

“Informally, it is expressed by the
Hollywood Principle - "Don't call

us, we'll call you".” Wikipedia

26Monday, 5 November 2007

Some IoC containers use Java 5 annotations. Spring uses XML. In Sakai each component is
defined in a pack, which contains its own configuration setup. Each pack exports service APIs
to the component manager and each pack works within it own isolated class-loader. It can
see its own classloader, and the shared classloader where the api’s are.

But it cant see the implementations of other classes.... so one component cant bind via an
implementation. This guarantees separation of concerns in the code base, but not always in
the design.

Persistence

27Monday, 5 November 2007

We have constructed a framework of components, busy serving users, but if the framework
cant store anything, then its not much use for collaboration.

Database

• Oracle

• MySQL

• HSQLDB

• Others

28Monday, 5 November 2007

Sakai uses a database for persistence. We use 3, MySQL and Oracle for production and HSQL
for demos.

The code base has recently been re-factored to allow other databases and there is a
SQLServer port, however we do not currently QA databases other than the three code
vendors.

ORM/JDBC

• Hibernate

• SpringJDBC

• Direct JDBC
(SqlService)

• others

• Apache Cayenne

29Monday, 5 November 2007

To access those databases you can use an Object Relational Mapping framework or go direct
to the SQL. Hibernate support is part of sakai and many tools use it. Spring has some JDBC
support that makes it easier to manage transactions and connections, or you can use the
original SqlService implementation that deals with the database directly via JDBC. You can
even use the JDBC datasource directly if you want to do everything yourself.

Since the datasource is available other ORM frameworks can be used, like the excellent
Apache Cayenne.. personal favorite.

RWiki: A
Sakai tool

30Monday, 5 November 2007

Thats the structure of Sakai, now a real tool. RWiki. Developed for collaborative content
writing amongst social science researchers in the field. It uses the Radeox wiki engine that
isn SnipSnap and confluence.

Shared
Classloader

Spring Application
Context
component
classloader

Spring WebApp
Context
webapp
classloader

RWiki: Structure

Request Filter

Servlet

Velocity
Templates

RWiki Service
API’s

RWikiObject
Service

RWikiRender
Engine

RWiki Hibernate
POJO’s

Hibernate

31Monday, 5 November 2007

It has all the parts seen in a full sakai application. The Tool is housed in a webapp with a
request filter. Content markup is provided by Velocity templates, but the Servlet is a pure
request scope servlet that does no use any of the heavy semantics of the full velocity servlet.
The tool has its own Spring context since it is configured by Spring.

The tool uses and RwikiService api to manage both rendered and raw wiki content.

In the component there are 2 primary implementations, the Rwiki Object Service and the
Render Engine. Data is persisted by hibernate and the Hibernate POJO’s are in shared. Other
tools wanting wiki markup could use the Render Engine via its API.

Search
Sakai
Component

32Monday, 5 November 2007

A more complex sakai tool is search. Search is designed to contain a single search index for
all the content in sakai over all users and all sites. The index contains enough authorization
information to make it possible for a user to be given only the content that they are allowed
to see.

Search Structure
Search WebApp

RequestFilter,
Servlet,

Velocity Templates

Search Component

Search API

SearchServiceImpl

Lucene
IndexSearcher

IndexBuilder

Timer

Indexer

Index
Queue

Lucene
Index

SearchService

33Monday, 5 November 2007

There is a search tool, similar in structure to rwiki. A search API in shared and then an search
component. The search component is more complex as it has a request component and a
back-end indexer that build journaled log of search index additions.

Search Component

• About 40 beans

• Spring Configured

• Indexer free
threaded

• Builds a
Journaled Lucene
Index

 <beans>

 <bean id="org.sakaiproject.search.api.JournalSettings"

 class="org.sakaiproject.search.journal.impl.JournalSettings"

 >

 <property name="localIndexBase" ><value>${sakai.home}indexwork</value></property>

 <property name="sharedJournalBase" ><value>${sakai.home}searchjournal</value></property>

 <property name="minimumOptimizeSavePoints" ><value>10</value></property>

 <property name="optimizMergeSize" ><value>5</value></property>

 <property name="soakTest" ><value>false</value></property>

 </bean>

 <bean id="org.sakaiproject.search.api.SearchService"
 class="org.sakaiproject.search.component.service.impl.ConcurrentSearchServiceImpl"
 init-method="init" >

 <property name="notificationService"><ref bean="org.sakaiproject.event.api.NotificationService" /></property>

 <property name="eventTrackingService"><ref bean="org.sakaiproject.event.api.EventTrackingService" /></property>

 <property name="userDirectoryService"><ref bean="org.sakaiproject.user.api.UserDirectoryService" /></property>

 <property name="sessionManager"><ref bean="org.sakaiproject.tool.api.SessionManager" /></property>

 <property name="searchIndexBuilder"><ref bean="org.sakaiproject.search.api.SearchIndexBuilder" /></property>
 <property name="indexStorage"><ref bean="org.sakaiproject.search.index.IndexStorage" /></property>

 <property name="autoDdl"><value>${auto.ddl}</value></property>
 <property name="filter"><ref bean="searchSecurityFilterImpl" /></property>
 <property name="defaultSorter"><value>none</value></property>
 <!--
 If you want to make this search instance use a remote search server
 set the search server URL
 http://searchserver/sakai-search/searchservice
 This is probably best done in sakai.properties eg
 searchServerUrl@org.sakaiproject.search.api.SearchService=http://localhost:8080/sakai-search-tool/xmlsearch/
 -->
 <!--
 <property name="searchServerUrl" ><value></value></property>
 -->
 <!--
 For added security a shared key may be added, it must be the same on all nodes
 -->
 <!--
 <property name="sharedKey" ><value></value></property>
 -->
 <property name="luceneSorters">
 <map>
 <entry key="dateRelevanceSort"><ref bean="dateRelevanceSort"/></entry>
 </map>
 </property>
 </bean>

34Monday, 5 November 2007

Like I said the component is a bit more complex. 40 or so beans representing 4 XA
transaction managers fro various parts of the index life cycle, but there is no implementation
bindings between the transaction managers and its all configured using Spring. Since it needs
close control over the database, it uses JDBC directly for the management of its inbound
queue.

Technical Presentation
• That was Sakai:

• The Stack

• The Portal

• Examples of a Service

• Examples of a Tool

• For a User: “Introduction to
Sakai”, Copland Lecture
Theatre, probably just
finished.

35Monday, 5 November 2007

So thats Sakai, its internals. Throughout this conference there will be pointers to information
and to parts of the developer community.

If you are a user, congratulations for sitting though that, I hope it was interesting. If you have
teaching or research use cases, I would encourage you to contribute them to the community.

If you are a developer or designer, have questions or want to contribute or are just stuck,
please just ask the community, they will respond.

And if you are going to be responsible for running sakai, and hit a problem, ask the
community will help. Most of those out there, love a challenge and know what it feels like be
left exposed by unresponsive support.

Traffic on the sakai lists is 24x7 by almost 365.

Thank you and
Questions

36Monday, 5 November 2007

Finally, thank you, and are there any questions.

