
Production
Maven build System and Automation,

Deployment Options for Sakai

Dr Ian Boston
CTO,

CARET, University of Cambridge

1Tuesday, 6 November 2007

Good morning, my name is Ian Boston, I am CTO for Caret, University of Cambrdige. Over the
next 60 minutes I hope to give you an introduction to running Sakai in production.

A Technical Presentation

• Sakai in Production

• Build Systems

• Questions

2Tuesday, 6 November 2007

Sakai in production is not just about the having a server up and running. A well run
production environment will cover both the human aspects of deployment for example,
acceptable user policy, and the technical infrastructure to run the installation and maintain it.
I will introduce the planning for production and the build systems necessary to manage the
chosen production instance.

Sakai In Production

• The Database

• App Servers

• Supporting Servers

3Tuesday, 6 November 2007

Sakai, is a web application. It needs a number of servers to operate. Although it is possible to
run Sakai on a single box, its worth thinking of the layers of athe architecture as distinct
service components. Sakai uses a database server to store its data. The core application runs
on one or more application servers and the application is supported by a number of other
servers such as cluster wide shared file storage.

Supported Databases

• MySQL 4.1 with Query Cache Enabled.

• Oracle 10g with latest JDBC Drivers.

4Tuesday, 6 November 2007

Sakai operates on a single database instance, and this is probably the first choice facing any
one planning a deployment. Sakai is QA’d against 2 production databases, MySQL 4.1 with
the query cache enabled, and Oracle 10g with the latest drivers. The choice of database is
probably an institutional decision driven by the experience of the team and perhaps site wide
licenses.

Database Server

• Definitely:

• Don’t use HSQL in production.

• Probably:

• Oracle scales further than MySQL

• MySQL needs less maintenance

• Oracle costs more, license and people.

5Tuesday, 6 November 2007

So a quick run though of the things that should influence that choice. Firstly the binary demo
package of Sakai runs with HSQL db out of the box. Don’t be tempted to use HSQLBD in
production. It might work well for 10 users for a month, but it doesn’t scale at all, and has a
slightly broken transaction model. In short, don’t use it in production.

Its probably true that Oracle will scale further than MySQL, although its really easy to find all
sorts of statistics from each vendor on how much better their product is than the others. Its
also probably true that MySQL is easier for the non expert to run. It works out the box, in
general the installation process can be a few minutes long and for most applications the
optimization and scaling is relatively simple.

Oracle on the other hand requires more resources to run in production. It certainly used to be
the case that a production instance would require at least 1 day of experienced DBA per
month to check the health of the DB and perform table-space maintenance. Sakai only
addresses the table setup and does not get into table-space tuning. Its almost certain that
you will need an Oracle DBA to perform the deployment and get the dynamic parameters on
the tablespace correct.

And then there is the license.

Oracle licenses costs, usually per cpu, unless you have spent $M of bucks on one of their
other applications and got site wide licensing arrangements.

So both MySQL and Oracle are valid production environments, and depending on you ultimate
size you can make your own choice. Michigan with 40k students uses Oracle as does Indiana
with 100k. Unisa has 180K students on MySQL.... so nothing is clear. At Cambridge we have a
site wide license for Oracle, having bought Peoplesoft SIS and Oracle Financials, however we
run on MySQL because we dont have dedicated Oracle DBA resource available.

Database Sizing

• Size the DB server correctly

• Choose a Machine with good I/O
bandwidth

• Memory

• Disk

6Tuesday, 6 November 2007

The main thing with the database is that you size it correctly. Its the center of the Sakai
cluster and at the moment it is hit quite hard by the app servers. So start with the Hardware,
chose something that can support enough memory, and has high I/O bandwidth to Memory
and Disk. Today this probably means a well architected 64 bit server. If its going to be a big
Oracle installation, it might be something special from Sun or IBM. Lower down the range
there are plenty of x86 boxes that do the Job. At Cambridge we went for XServes here
because we can throw memory into them and they have very good I/O pathways to both
memory and I/O subsystems.
Hard pressed DB systems are driven by the I/O firstly to memory and then to Disk. Make
certain that you get this right. Fast local disks are good, but also high bandwidth Disc
subsystems. We are using 4GB FC connections to a San which offloads nearly all the I/O from
the machine.

Database Resilience

• If the DB goes down, everything goes

• Disaster Prevention

• Disaster Recovery

7Tuesday, 6 November 2007

So the DB is the center of the Sakai cluster and if it goes, everything goes. You need to think
about how you are going to stop this happening either by putting in resilient hardware with
redundant everything, or by putting in multiple machines in some sort of cluster.

Don’t be tempted to go too far down the disaster mitigation strategies. The impact of major
natural disaster on your VLE is probably not something that should force you to put you DB
servers 50 miles apart.

Remember the app servers hit the DB hard and any latency you introduce between the app
servers and the DB matters.
So, unless you have bags of Dark Fiber doing nothing, with sub ms packet latency, put your
DB servers on the same local LAN as your App servers.

There there is the speed at which you can recover from a disaster.
If 10s downtime is Ok, then a hot db standby is probably Ok.
If 5 minutes a cold DB standby,
if 30 miniutes is Ok, you may be Ok with a cold recovery from backup.

The list goes on, work out the risk and find a solution that matches your risk profile.

Oracle - Disaster
Prevention

• Real Application Cluster (RAC) - Hard
for most to configure, can be costly,
license + SAN

• Hot standby with hot redo logs.

• Resilient Hardware

• Database hardware virtualization

8Tuesday, 6 November 2007

Looking at specifics.
As you would expect. Oracle has a whole range of solutions to disaster prevention. You could,
if you have lots of experience time and money go for an Oracle RAC. They are hard to setup,
they do need a SAN of some form and you will pay for each cpu in the cluster unless you can
get a deal. The complexity of the RAC setup is probably a step too far for most Sakai
installations.

Practical solutions to an Oracle cluster include a hot standby with redo logs, which can give
fast switch over in the case of a failure.

You can take the resilience down to the hardware level with some resilient hardware solutions,
that reduce the risk of hardware failure.

Or you can virtualize the OS.
Virtualization has the huge advantage of abstracting the hardware and done properly can give
you migration of the virtual machine inside the data-center with interruptions as low as
100ms.

To virtualize Oracle well, you probably need to have a virtualization targeted at Oracle.

Oracle - Disaster
Recovery

• Hot Standby, hot redo logs.

• backups

• virtualization migration to new
hardware.

9Tuesday, 6 November 2007

For recovery after the disaster, hot standby with redo logs is usually the chosen solution. It
has the added advantage that backups can be taken from the hot standby machine to avoid
downtime on the live server.

Obviously you need real backups of the DB, not forgetting that a disk backup of a running
Oracle instance will almost never be valid. Its amazing how many times a sysadmin has don a
cold backup of a hot service and wonders why it ends up in a strange state.

With visualization, you get the opportunity to snapshot the VM image. If you are using some
sort of LVM under the VM image you get the opportunity to do this live which can give you
options to backup the VM image any point in time, but don’t forget that you will need to
ensure your snapshot results in a valid oracle restoration point, just the same as cold
backups of hot db’s.

MySQL - Disaster
Prevention

• MySQL Cluster - forget it - NDB has to
fit in memory, and Sakai uses InnoDB

• HA with Master Slave replication -
Failover easy - Failback hard.

• HA with DB on SAN - easyer.

10Tuesday, 6 November 2007

MySQL has different options. First don’t bother with the MySQL cluster, when you dig into the
documentation on the NDB table type you find it has to exist entirely in memory and so is
only really suitable for quite small databases. Coupled with the fact that Sakai is expecting
InnoDB.

The main disaster prevention strategy for MySQL is a High Availability Cluster. There are 2
options for achieving this. Shared nothing with a slave database. The master is live and it
replicates its redo logs to the slave which replays them. When the master goes, the slave gets
reconfigured to be the master by the OS level HA switchover. Its relatively easy to make
replication and failover work, but getting automated fail back is hard, as it requires all sorts
of snapshots and redo log edits to get it to work.

Alternatively you can store the database on some sort of shared disk, and have a live DB
instance with a cold standby. This is much easier to configure and the downtime from
hardware failure can be as low as 5s if the configuration is good. Cambridge are running like
this and its appears to work well with minimal effort.

MySQL - Disaster
Recovery

• Master Slave replication.

• Backups

• Virtualization and VM migration, Xen,
VMWare

11Tuesday, 6 November 2007

MySQL recovery follows the same routes.

Master Slave replication gives you a read only instance. This can with work become the live
instance quite rapidly. It also make it much easier to do backups from the slave as there is no
interruption to the live master.

Backups for MySQL are relatively quick to recover from, but again cold backups of a hot
database don’t work.

And then there is virtualization. Since MySQL doesnt do anything special at the Hardware
level, standard virtualization works just fine. Xen for instance claims <100ms migration of
VMs in the same datacenter, so you could consider the Virtualization route as a way of
making the DB resilient.

JDBC Solutions

• CJDBC

• HAJDBC

12Tuesday, 6 November 2007

So Sakai doesn’t support a clustered DB, but there are alternatives that you may have heard
of. CJDBC and HAJDBC use some form of JDBC controller to maintain multiple copies of the
same DB, and these look like possible alternatives.

JDBC Performance

• Writes Scale worse

• Reads Scale better

13Tuesday, 6 November 2007

With these JDBC solutions, the writes are replicated over all instances and the reads are
distributed, which make the reads faster and writes slower. This sounds good as there are
many more reads in Sakai than writes.

Limitations

• “HA-JDBC does not safely support
stored procedures that update
sequences or insert rows containing
identity columns.”

• CJDBC migt be the same.

• Probably wont work for Sakai..... but
testing would tell.

14Tuesday, 6 November 2007

However there are some issues that the App layer needs to be aware of. No triggers sorted
procedures or anything that modifies state except directly as a result of the JDBC connection.
The statement from HAJDBC is clear on its limitations and CJDBC might be same. Although
this could work with Sakai, I know of a number of tools that use PK sequences and there may
be some stored procedures to make oracle work quicker in key areas. So, you could try, but I
feel that these probably wont work with Sakai.

Content

• File System

• Database - ok for Oracle, not for
MySQL

15Tuesday, 6 November 2007

One other thing to consider with the Database is where the bodies of files uploaded to Sakai
are stored. Originally Sakai stored all content in the DB. In oralce you can dedicate table
spaces to storing blobs and so this can be managed but it does create issues for the DBA’s
when performing backups. Putting the content in the DB for MySQL is a really bad thing, as
access to those tables becomes really slow.

In general most sites are not storing all content on filesystem shared between the cluster
nodes.

App Servers

• Tomcat 5.5.x, QA’d

• WebSphere port, IBM supported

16Tuesday, 6 November 2007

The Application server is at the core of Sakai. Its where all the java code runs. We QA against
Tomcat 5.5 and will move to Tomcat 6 soon. There is a port of Sakai to IBM websphere and
others are probably possible, WebLogic, JBoss, Jetty etc. There are only very minimal bindings
to tomcat that can probably be recoded for other app servers.

Deployment Options

• Single Node

• Clustered

• High Availability

17Tuesday, 6 November 2007

In deploying the app server you should think about the scale and reliability you need in this
layer. The App servers can operate as a single node, or in a clustered environment and this
gives the app server layer some level of high availability, however users are currently bound
to each app server so they will notice if their instance goes down.

HTTP Front End

Single node

Tomcat

Database Content Store

ajp1.3

JDBC

18Tuesday, 6 November 2007

So this is what a single node deployment looks like. On the front end you almost certainly
want something other than Tomcat to front up the Http requests, like Apache. Then Apache
connects using AJP 1.3 to the tomcat instance that uses JDBC to talk to the database and
accesses a content store for the bodies of files.

Single Node

• Possible to Run on One Node.

• upto 100 concurrent, database,
appserver, everything.

19Tuesday, 6 November 2007

Single node deployments, where everything the database, content store, front end and app
server are all on the same machine, are probably good for up to 100 concurrent users. But if
you think that you will see more than that, you really should consider separating out the
components. Even if its to put the DB onto a different box.

JDBC

HTTP Load Balancer Front End

Clustered Sakai

Tomcat

Database Content Store

ajp1.3

Tomcat Tomcat Tomcat

20Tuesday, 6 November 2007

A clustered Sakai has more than one Tomcat. The cluster of Tomcat App servers are fronted
up by an apache load balancer configured to have sticky sessions.

Cluster Considerations

• Increased load on DB Server, more
connections.

• Load Balancer more complex

• Big5 IP Load ballancer.

• Zeus, ZTM

• Apache, AJP13

21Tuesday, 6 November 2007

But when you go to a cluster, there are things you need to think about. Many app servers
surrounding a DB will hit the DB harder. there are additional queries associated with cluster
maintenance that hit the DB. On the front end you need to start thinking about how IP traffic
is distributed amongst the Tomcat app servers. THere are lots of options depending on
expected load and budget. Hardware IP load balancers like Big5, or software solutions like
Zeus ZTM Load balancer. But they all go down to something that talks AJP 1.3 eventually to
send the traffic to Tomcat.

I think that unless you expect to see more than about 8M hits a day, a well configured
apache instance with mod_proxy_ajp should be able to cope with the load. Thats only based
on hosting other sites serving that order of pages.

Hierarchical Structure

Hardware LB

Apache LB

Tomcat Tomcat

Apache LB

Tomcat Tomcat

Database Content

22Tuesday, 6 November 2007

If you use a hardware LB the chances are that it will not be able to talk AJP1.3 so you will
need to have an apache layer to manage the connection to tomat.

If you are going to use Java in 32 bit mode, and you have app server nodes with more than
2GB of memory, then you probably want to run more than one app server on each hardware
node. This leads to a hierarchical structure, however it can be a pain to configure as each
tomcat instance needs a different configuration to make certain there are not port clashes.

Hierarchical Structure

Apache LB

Tomcat Tomcat Tomcat Tomcat

Database Content

23Tuesday, 6 November 2007

If you can use something that does talk direct to tomcat, then the installation becomes
simpler, but you still need to make good use of the available memory on each hardware
node.

Apache LB

Virtualize App Servers

Tomcat Tomcat Tomcat TomcatTomcat

Database Content

24Tuesday, 6 November 2007

One approach that works well to reduce the complexity of the app server deployment is to
use virtualization at app server node layer. This way each virtualize app server has the same
configuration as it believes its got an entire machine to itself.

Virtualized App Servers

Apache LB

MySQL HA Pair NFS Server HA Pair

TomcatTomcat

Tomcat Tomcat

TomcatTomcat

Tomcat Tomcat

Apache LB HA Pair

NFS Server HA PairMySQL HA Pair

•Apache AJP1.3 Load
Balancer, HA Pair
•2 App servers, with 4
Xen Virtual machines,
1 2G tomcat per Xen
VM
•MySQL HA Pair, DB
on SAN
•NFS Server HA Pair,
content on SAN

SAN

25Tuesday, 6 November 2007

At cambridge we take this approach. We use 2 hardware nodes with 8G of memory each
running 4 Xen Virtual machines. So we have 8 app servers in total. We then have a HA apache
front end, an HA MySQL back end and a HA NFS server for content bodies. All is running off a
SAN.

Cambridge Hardware

• Dell 1U 2x Dual Core 3GHz Xeons. (8 vcpus per
box)

• Apache, NFS share same HA pair 4GB

• App servers: 8GB, Xen 3.0, Debian Etch, 4 VM’s
per box.

• Database: Apple XServe 64Bit Intel Xeon 3Ghz DB
pair, 16GB per box.

26Tuesday, 6 November 2007

The hardware itself is mixed
Linux front ends,
Shared HA units
XServer for the Mysql ... ease of setup ... good IO bandwidth.

Others

• Indiana use a Virtualized Big Iron Box for 8 app
servers. And a specialize Virtualized IBM box
designed for Oracle Virtualization.

• Michigan use a big Oralce box and lots of
individual app servers behind a Hardware LB.

• More information on confluence.

27Tuesday, 6 November 2007

Others use different approaches

Indiana, heavily virtualized at tall layers with a Big5 IP LB

Michigan, real hardware, a big Oralce instance and lots of app servers on different subnets.

There is information of deployments on confluence.

Other Cluster
configurations

• DDL, bring one node to build the DB,
then turn off.

• LB need Sticky sessions.

• Rolling upgrades - possible but dont,
Sticky session, schedule down time.

• Search Service, more complex.

28Tuesday, 6 November 2007

Watch out for things in a cluster.

Sessions

Supporting Servers

• Shared File Storage, NFS

• Database Replication Slaves

• Load Balancer

• LDAP Cache

29Tuesday, 6 November 2007

The core services have been talked about but you probably will have other services.

Tuning for Performance

• The Request Pipeline

• App Server

• Database

30Tuesday, 6 November 2007

Blocked Pipeline

Apache
1000

Tomcat
1000

Tomcat
DB Pool

50

DB
100

0

1,250

2,500

3,750

5,000

Apache Tomcat DB Pool DB
Memory Dwell time

31Tuesday, 6 November 2007

If the DB pools is too small request wait in the DB pools, consuming more memory than
necessary, resulting in extra GC activity as the objects get of out the low cost eden part of the
heap.

Overloaded Cluster

Apache
1000

Tomcat
1000

Tomcat
DB Pool

250

DB
100

0

1,250

2,500

3,750

5,000

Apache Tomcat DB Pool DB
Memory Dwell time

32Tuesday, 6 November 2007

If the DB cant handle the load the connections have to wait until it can.

Tuned Pipeline

Apache
1000

Tomcat
250

Tomcat
DB Pool

250

DB
250

0

1,250

2,500

3,750

5,000

Apache Tomcat DB Pool DB
Memory Dwell time

33Tuesday, 6 November 2007

A ballanced pipeline will process request with minimal waits so all the memory and all the
cpu is consumed dealing with requests and less it used doing unnecessary GC operations.

Tuned Pipeline

Apache
1000, 5000

waiting
Tomcat

250

Tomcat
DB Pool

250

DB
250

0

1,250

2,500

3,750

5,000

Apache Tomcat DB Pool DB
Memory Dwell time

34Tuesday, 6 November 2007

Then you can scale up apache, queing extra requests in apache where the cost is low. Apache
can queue a request with lower impact than tomcat can

App server

• Heap:

• Use JConsole

• Use the throughput GC

• eg “JAVA_OPTS=” -d64 -Xms2048m -Xmx2048m -
XX:PermSize=256m -XX:MaxPermSize=512m -
XX:NewSize=384m -XX:MaxNewSize=512m -
XX:SurvivorRatio=16 -XX:+UseConcMarkSweepGC -XX:
+UseAdaptiveSizePolicy ”

• Ask

• DB Pool.

• Oracle: Don’t create or destroy connections, expensive.

35Tuesday, 6 November 2007

When running the app server look at how its running with JConsole or something similar,
tune the java opts to make efficient use of the heap.

32 bit or 64bit

• Should be able to run in 32bit.

• Sad fact is, 2.4 started to need 64bit
before patching.

• Longer term, we should only need 64bit to
handle greater load, not just to survive.

36Tuesday, 6 November 2007

Database Tuning

• Oracle:

• Read a Good book on performance tuning
for Oracle..... and DO IT, SGA, Partitions,
IO, etc etc, regularly

• MySQL

• Size the DB and turn the Query Cache on

37Tuesday, 6 November 2007

Build Systems

• Source Configation Mangement

• Build systems

• Targets

• Localizations

• Automation

38Tuesday, 6 November 2007

SCM

• Subversion Source Repository

• Trunk - Fast moving not for
production

• Tags - The release

• Branches - The release with patches

• Take the Tag, but watch for patches
and think about switching to branch.

39Tuesday, 6 November 2007

Build configuration

• Have your own base SVN directory

• In 2.5 have your own pom.xml (more
later)

• Configure svn:externals to load the
modules and versions you want to
build

• Patch overlay before build

40Tuesday, 6 November 2007

SVN Setup

search https://source.sakaiproject.org/svn/search/branches/sakai_2-4-x
sections https://source.sakaiproject.org/svn/sections/branches/sakai_2-4-x
site https://source.sakaiproject.org/svn/site/branches/sakai_2-4-x
site-manage https://source.sakaiproject.org/svn/site-manage/branches/sakai_2-4-x
syllabus https://source.sakaiproject.org/svn/syllabus/branches/sakai_2-4-x
test-harness https://source.sakaiproject.org/svn/test-harness/branches/sakai_2-4-x
textarea https://source.sakaiproject.org/svn/textarea/branches/sakai_2-4-x
tool https://source.sakaiproject.org/svn/tool/branches/sakai_2-4-x
user https://source.sakaiproject.org/svn/user/branches/sakai_2-4-x
util https://source.sakaiproject.org/svn/util/branches/sakai_2-4-x
velocity https://source.sakaiproject.org/svn/velocity/branches/sakai_2-4-x
web https://source.sakaiproject.org/svn/web/branches/sakai_2-4-x
webservices https://source.sakaiproject.org/svn/webservices/branches/sakai_2-4-x
mailtool https://source.sakaiproject.org/svn/mailtool/branches/sakai_2-4-x
usermembership https://source.sakaiproject.org/svn/usermembership/branches/sakai_2-4-x
polls https://source.sakaiproject.org/svn/polls/branches/sakai_2-4-x

41Tuesday, 6 November 2007

Maven Build

• 2.4.x builds with Maven 1

• Post 2.4 is Maven 2

42Tuesday, 6 November 2007

Maven 1
• Setup Maven 1

• Download, Install see http://maven.apache.org/maven-1.x/start/install.html

• configure build.properties
maven.repo.remote = http://source.sakaiproject.org/maven/
maven.tomcat.home = /Users/ieb/Caret/sakai22/tomcat/

• maven plugin:download -DgroupId=sakaiproject -DartifactId=sakai -Dversion=2.2

• setup MAVEN_OPTS
export MAVEN_OPTS= -Xms168m -Xmx512m -XX:PermSize=24m -XX:NewSize=64m

• Write a build script

• eg svn co https://saffron.caret.cam.ac.uk/svn/project/camtools/tags/2.4.x
sh patch-and-overlay.sh
maven pack-demo

• Pack Demo produces a tarball of the sakai image containing tomcat ready to deploy.

43Tuesday, 6 November 2007

Maven 1 Structure
• Projects built by the Maven 1 Multiproject

reactor

• Scans the disk for project.xml

• Works out a dependency graph

• builds according to dependency graph.

• master/project.xml, master/project.properties

• Defines the properties of common jars.

• All project.xml’s extend master/project.xml

• Sakai Plugin

• Responsible for Deployment into shared/lib
common/lib components and webapps

44Tuesday, 6 November 2007

Maven 2

• Dependency
Management, maven
1 has no dependency
management

• Faster repository

• More complete
configuration.

• /master/pom.xml is the
base

• /pom.xml extends
/master/pom.xml

• /project/pom.xml
extends /pom.xml

• project poms extend
/project/pom.xml

45Tuesday, 6 November 2007

Maven 2 installation

• Maven 2.0.6 or later

• Download, unpack,
set JAVA_HOME, add
maven-2.0.7/bin to
path.

• mvn --version

46Tuesday, 6 November 2007

Maven 2 build

• No configuration, all
in pom.xml’s

• mvn -Ppack-demo
install

• tarball in /pack-demo

• Developer builds

• mvn clean install

• mvn sakai:deploy -
Dmaven.tomcat.home
=/opt/tomcat

47Tuesday, 6 November 2007

Customizing the build

• Change the base
pom.xml modules

• use maven 2 profiles

 <profiles>
 <profile>
 <id>pack-demo</id>
 <modules>
 <module>pack-demo</module>
 </modules>
 </profile>
 <profile>
 <id>mini</id>
 <modules>
 <module>access</module>
 <module>alias/alias-api/api</module>
 <module>alias/alias-impl/impl</module>
 <module>alias/alias-impl/pack</module>
...
 <module>velocity</module>
 <module>reset-pass</module>
 </modules>
 </profile>
 <profile>
 <id>full</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <modules>
 <module>master</module>
 <module>access</module>
 <module>alias</module>
...
 <module>reset-pass</module>
 </modules>
 </profile>
 </profiles>

48Tuesday, 6 November 2007

 Targets - Options

• dont build take the binary, ok for
100% standard deploys

• developer build to to a app server
overlay

• pack demo get a tomcat/sakai tagball

49Tuesday, 6 November 2007

Automated Build
pipeline

Continuum Build

Download
Source

Patch
Source

build deploy

SVNFixesDevelopers

Jira

Work Queue

50Tuesday, 6 November 2007

Automated Build
pipeline

Continuum Build

Downloa
d Source

Patch
Source

build deploy
build Xen
QA Image

build Xen
Production

Image

Apache LB

MySQL HA Pair
NFS Server HA

Pair

TomcatTomcat

Tomcat Tomcat

TomcatTomcat

Tomcat Tomcat

Apache LB HA Pair

NFS Server HA
PairMySQL HA Pair

TomcatTomcat

Tomcat Tomcat

Tagged Build

QA Branch

Production Servers

QA Servers

From SVN

Jira

Change
History

51Tuesday, 6 November 2007

Thank you and
Questions

52Tuesday, 6 November 2007

Finally, thank you, and are there any questions.

