
Core Architecture
Sakai Kernel Progress towards Sakai 2.6

and Performance Improvements

Dr Ian Boston
CTO,

CARET, University of Cambridge

A Technical Presentation

• The Sakai Kernel

• Performance enhancements in 2.5

• Improvements for 2.6

• Longer term

• Questions

The Sakai Kernel

Why Architecture
Matters

• Creates Conflict

• Good Architecture
makes a community
work and attracts
developers

• Modular architecture
is vital to a
communities growth

“architecture is the eternal
flame. Nobody is every happy
with the architecture; and since
it tends to be an immovable
object complaining about it is a
low risk activity. One is
unlikely to be called on it; e.g.
"put up or shut up "” Ben Hyde,
MIT

If its not broken,

• Modular Architecture

• Areas of Concern

• Volume of Code

• Standards

• Scalability

“Sakai has a reasonably
modular architecture that
has allowed teams of
developers to work
independently, its not
perfect, it has problems,
so lets not fix what is not
broken?”

Next Version
Development

v3v3branch

v2.5

community

kernel

v2.6

Loosing the community

What is

• A target to aim for.

• Achievable

• 4000 concurrent users
per 32bit app server.
2Gb Heap

• Mobile Sessions

• Easier to reload
applications

• Testable Applications

• Sensible URL Space

• no tool iframes

The “Kernel” now
alias realmsresources portal site user

access courierlogin masterreference site man

alias authzcontent portal site user

courieremaileventimport jcrsite man

cluster cmcomponentdbjobschedule tool

alias authzcontent site userportal

courieremaileventimport site man velocity

clusterdb componentjobschedule tool util

Tools

API

Pack

Performance
enhancements in

2.5/2.4x

Bottlenecks

• Serialization

• Queries

Serialization

• Core parts of Sakai use XML

• pre-2.5 serialization DOM based

• Quota calculation scan.

• 1 1k upload == 400MB GC.

• Better Serialization

Original DOM: 3-4ms per entity, 400K heap
SAX: 1-2ms per entity, 50K heap
New parser: 0.0630ms 4.681 K,

For writing to the DB we have only DOM and the New parser.
DOM: 6ms 80K
New Parser
0.0493ms 6.768 K

DOM SAX Binary

Quota Calculation

• To calculate the
quota, load all
resources in the site,
add up.

• load == parse xml
with DOM

• moved size into
column and sum in
the DB.

before fix after fix

Before 400MB, After 400K, Still using DOM with binary 4K

Calendar

• Loaded all events in a
site

• DOM Serialization

• Added Range Query
to limit number
loaded

• Converted to SAX
Serialization

Repent
• These problems have

existed since 1.0

• Why didn’t anyone fix
them earlier ?

• Why didn’t I submit a
patch ?

“architecture is the eternal flame. Nobody
is every happy with the architecture; and
since it tends to be an immovable object
complaining about it is a low risk activity.
One is unlikely to be called on it; e.g. "put
up or shut up "”

Improvements for 2.6

2.6 Kernel Roadmap

• Fix other Serialization issues

• Caching

• Events

• Tuning

• Memory Footprint

• Portal

Serialization Issues

• Convert to Binary

• Convert to Flat ie
Columns

Other Node

JTA

Request

Caching

• Use ehcache (done 2.5)

• Under Hibernate

• Under Memory Service

• Where ever there is a cache

• Tune (in progress)

• Integrate with JMX (done trunk)

• Enable Cluster invalidation with
ehcache

• Currently hits the DB hard

• Upgrade Cluster Service

• Enable a transactional request cache

• Consolidate Caching code
JSR-107 the caching API was never ratified
and is not widely supported. ehcache does
support it, but we probably wont bind to it.

Ehcache

Hibernate Memory Service

Ehcache

Direct

Transactional Request Cache

Cluster Invalidation

Services

Events

• Events table is expensive.

• Events are not bound to transactions
correctly

• Propagation requires central DB
scaling

• Replace with JMS

• ActiveMQ

• Use local brokers with local
storage in a master election
cluster.

• One subscriber to warehouse
events if required.

• Bind to JTA

• may require replacement of
current transaction manager.

DB

M

WarehouseDB

DB Events

JMS Events

Tuning and Monitoring

More Profiling, Monitoring, load testing and Forensic analysis. Measurable
evidence is required to make improvements.

Memory

• Session Footprint

• 1.4G/4000 = 350K/User

• Request Footprint

• Requests now 100M GC

• Should be 1M

• Base Requirements

• Perm Space

• too many jars, too many
copies.

• Heap

• Bloatware ?

• Session Footprint

• Investigate Session usage

• Request Footprint

• Profile and reduce, caching

• Base Requirements

• Investigate classloader structure and
component manager

• We should not make 64bit a requirement
to run Sakai in production.

“In 1999 tuning an early non trivial webapp, we tuned the application and got 1000 users in 512MB
on a PIII 366MhZ Linux box, we don’t need 64bit to service users”

Portal

• Make Sakai behave like a
normal web application.

• Make Back button work

• Make URL’s make sense

• deprecate iframes for
tools.

• Cleaner Entity Broker URL’s

 “Strictly, the idea of a uniform syntax
for global identifiers of network-
retrievable documents was the core idea
of the World Wide Web. In the early times,
these identifiers were variously called
"document names", "Web addresses" and
"Uniform Resource Locators". These
names were misleading, however,
because not all identifiers were locators,
and even for those that were, this was not
their defining characteristic.
Nevertheless, by the time the RFC 1630
formally defined the term "URI" as a
generic term best suited to the concept,
the term "URL" had gained widespread
popularity, which has continued to this
day” Wikipedia

Integrate JSR-170

• Generalized Content
Store for storing
anything that is
content.

• Jackrabbit.

Startup/Testing/
Developing

• Improve Component
Manager.

• Remove sensitivity to
startup order.

• Make better use of
classloaders

• Investigate
JSR-277,
Classworlds,
Plexus

Longer term

Mobile Sessions

• Reduce Session Size

• Standardize Session

• Make it mobile

• eg Terracotta

Scale Up DB

• Tune Cluster Caches

• Store more in the app
server (a reason to go to
64bit)

• Reduce Load on the DB,
fewer unnecessary low
performance reads

• Enable Read only snapshots

Portal

• Make everything URL
addressable

• All sorts of
Accessibility fixes.
Input from Fluid

Thank you and
Questions

