

Sakai Kernel Bundle
Service Manual - Tools

Date: November 9, 2005
Version: 2

Table of Contents

1 Overview... 3

1.1 Tool Definition.. 3
1.2 Helper Tools.. 3
1.3 Tools and Web Applications... 3
1.4 The Current Tool... 3
1.5 Tool Placement ... 3
1.6 Active Tools.. 3

2 Application Programming Interface ... 4
2.1 The Tool Manager API ... 4
2.2 The Tool API .. 5

2.2.1 Tool Attributes .. 6
2.3 The Placement API ... 7
2.4 The Active Tool Manager API ... 8
2.5 The Active Tool API... 8
2.6 The Tool URL Manager.. 9
2.7 The Tool URL API ... 10

2.7.1 URL Tool Request Parameters ... 11
3 Default Sakai Implementation .. 12
4 Utility Objects... 12
5 Recommended Practices ... 13

5.1 Accessing the Tool Manager .. 13
5.1.1 Access Using the Tool Manager Cover ... 13
5.1.2 Access Using the Component Manager.. 13

5.2 Tool Registration .. 13
5.3 Finding the Current Tool .. 14
5.4 Working With Tool Placements.. 14
5.5 Access to Resources.. 14
5.6 User Interfaces .. 15

5.6.1 JavaServer Faces... 15

5.6.2 MyFaces.. 17
5.6.3 Servlet (HTML Response).. 17

6 References... 18
7 Document History... 19

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 3 11/9/2005

1 Overview
This document describes the Sakai Tool Manager and related functions. Requirements for
this service are defined in Sakai Kernel Bundle Requirements [1]. This document is
based, in part, on an earlier description of tools by Glenn Golden [5].

1.1 Tool Definition
A tool is a piece of software that generates a user interface and responds to requests from
users. This response could be an HTML fragment, or it might be a binary stream (in file
downloads, for example). Sakai tools are usually intended to be embedded in a larger
interface, such as a portal.

1.2 Helper Tools
A helper tool is a tool intended to manage some well-defined part of a user interface,
such as the date picker. Helper tools can be mapped to part of the containing tool’s URL
space.

1.3 Tools and Web Applications
Although a Sakai tool can be set up as a web application, in most cases the incoming
HTTP request is handled by a Tomcat Filter like the RequestFilter or the FacesServlet. It
is possible to write your own filter, but most of the typical request cases are covered.

1.4 The Current Tool
The Tool Manager maintains a reference to the current tool associated with the current
request. This reference is created when the request is received.

1.5 Tool Placement
The same tool can appear in more than one place in a portal or other managed web
environment. To distinguish one instance of a tool from another, a tool placement is used.
The tool placement is a string that can be used to build a URL designed to be processed
by a request handler.

1.6 Active Tools
The Active Tool Manager extends Tool Manager to provide extended support for tools
that might want to include, forward, or help. Active tools extend Sakai to include support
for applications based on servlets.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 4 11/9/2005

2 Application Programming Interface
All interfaces and objects described here can be found in the kernel module and the tool
and active-tool Module-Parts.

The following APIs are associated with the Tool Manager:

 ToolManager
 Tool
 Placement
 ActiveToolManager
 ActiveTool
 ToolURLManager
 ToolURL

2.1 The Tool Manager API
Register a Tool given a Tool Object

void register(Tool tool); Add this tool to the registry of known tools.

Register a Tool given its XML document
void register(Document toolXml); Add all of the tools in this parsed XML

document (based on the DOM) to the
registery of known tools using the Tool
XML schema. [Is this a published
schema?]

Register a Tool given its XML file
void register(File toolXmlFile); Add all of the tools in this unparsed XML

file to the registry of known tools. The
format of this file must conform to the
Sakai Tool XML schema.

Register a Tool given its XML input stream
void register(InputStream
toolXmlStream);

Add all of the tools in this XML input
stream to the registry of known tools. The
format of this input stream must conform to
the Sakai Tool XML Schema.

Get a Tool given its well-known ID string
Tool getTool(String id); Find and return the tool associated with the

well-known ID string passed. Null is
returned if the tool is not found. The well-
known ID is defined in the tool registration
file in the ID parameter of the <tool> tag.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 5 11/9/2005

Find the set of Tools that match categories and keywords
Set findTools(Set categories, Set
keywords);

Find and return the set of tools (Tool
objects) that match the categories and
keywords provided. The category or
keywords set can be null, which indicates
that all categories or keywords match
(wildcard). If both are missing, then all
registered tools are returned. If a category
and a keyword are provided, the tool must
match both. If a set of categories and/or a
set of keywords are supplied, then the tool
must match one of the categories and one
of the keywords. If no tools are found, null
is returned.

Get the current Tool
Tool getCurrentTool(); The tool associated with the current request

or thread is returned or null if there is none.

Get the current Tool placement
Placement getCurrentPlacement(); Returns the tool placement associated with

the current request or thread or null if there
is none.

2.2 The Tool API
The Tool interface models a Sakai Tool that produces a user interface. Once created, the
parameters associated with a tool object may not be altered.

Get the Tool ID
String getId(); Get the well-known ID of this tool.

Get the Tool title
String getTitle(); Get the title of this tool.

Get the Tool Description
String getDescription(); Get the description of this tool.

Get the configuration properties for this Tool
Properties getRegisteredConfig(); Get the configuration properties defined in

the tool registration file. Access to these
properties is read only. There is no limit set
on the number of properties that can be
defined.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 6 11/9/2005

Get the keywords for this Tool
Set getKeywords(); Get the set of keywords defined for this

tool. Keywords may not be altered at
runtime.

Get the Categories for This Tool
Set getCategories(); Get the set of categories defined for this

tool. Categories may not be altered at
runtime.

2.2.1 Tool Attributes
The following static constants are associated with the Tool interface to define standard
request attributes.

Constant Keyword Meaning
FRAGMENT sakai.fragment The request attribute name whose

value if "true" requests producing a
document fragment rather than a
full document.

PORTLET sakai.portlet The request attribute name whose
value if "true" requests producing a
document suitable for aggregation
in a portal.

TOOL sakai.tool The request attribute name
containing the Tool definition for
the current request.

TOOL_SESSION sakai.tool.session The request attribute name
containing the ToolSession for the
current request.

NATIVE_URL sakai.request.native.url The request attribute name if
present causes our wrapped
requests to report the native URL
rather than the Sakai setup URL
information.

PLACEMENT sakai.tool.placement The request attribute name
containing the Tool placement for
the current request.

PLACEMENT_ID sakai.tool.placement.id The request attribute / URL
parameter name containing the
Tool placement ID for the current
request.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 7 11/9/2005

HELPER_DONE_URL sakai.tool.helper.done.url Standard session attribute shared

between client and helper: URL to
redirect to when helper is done.

HELPER_MESSAGE sakai.tool.helper.message Standard session attribute shared
between client and helper: end user
message.

2.3 The Placement API
Tool Placement models how we place and manage tools within Sakai. Placement
provides the context for a tool in a worksite (portal location). Tool placement objects can
be modified and saved back out to a database.

Tool placements may be specified as parameters than can be loaded, or they can be
determined by a portal and its URL conventions.

Get the configuration properties (includes registration properties)
Properties getConfig(); Get the configuration properties, combined

from placement and registration, for the
tool placement. Placement values override
registration. Access is read only.

Get the placement context
String getContext(); Get the context associated with this tool

placement. [This is probably a context ID
string, but needs to be verified.]

Get the place ID string
String getId(); Get the tool place ID string.

Get the placement configuration properties (excludes registration properties)
Properties getPlacementConfig(); Get the configuration properties for this

tool placement – not including those from
the tool registration.

Get the placement Title
String getTitle(); Get the tool placement title.

Get the Tool placed
Tool getTool(); Get the tool placed by this placement

object.

Set the placement Title
void setTitle(String title); Set the title for this tool placement. Non-

null values override the tool registration
title.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 8 11/9/2005

Set the Tool to be Placed
void setTool(Tool tool); Set the tool for this tool placement.

Save Changes to This Placement
void save(); Save any changes made to this placement.

2.4 The Active Tool Manager API
The Tool Manager API is extended to include support for Servlet API-specific activity.

Add a Tool to the Registry
void register(Tool tool,
ServletContext config);

Add this tool to the registry.

Add the Tools in this XML document to the Registry
void register(Document toolXml,
ServletContext config);

Add the tools in this XML document to the
registry, using the Sakai Tool XML
schema.

Add the Tools in this XML file to the Registry
void register(File toolXmlFile,
ServletContext config);

Add the tools in this XML file to the
registry, using the Sakai Tool XML
schema.

Add the Tools in this XML input stream to the Registry
void register(InputStream
toolXmlStream, ServletContext
config);

Add the tools in this input stream to the
registry using the Sakai Tool XML schema.

Get the active Tool with the given well-known ID string
ActiveTool getActiveTool(String
id);

Get the active tool with the given well-
known ID string in the tool registry.

2.5 The Active Tool API
Active Tool is an extension to the Tool API designed to introduce Servlet API-specific
tool activity.

Invoke a Tool to handle a complete request
void forward(HttpServletRequest
req, HttpServletResponse res,
Placement placement, String
toolContext, String toolPath);

Invoke the tool to handle the complete
request given placement, context, and tool
path.

Invoke a Tool to produce a fragment
void include(HttpServletRequest
req, HttpServletResponse res,
Placement placement, String
toolContext, String toolPath);

Invoke the tool to handle the request by
producing a fragment given placement,
context, and tool path.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 9 11/9/2005

Invoke a Tool as a helper
void help(HttpServletRequest req,
HttpServletResponse res, String
toolContext, String toolPath);

Invoke the tool to handle the complete
request as a helper. Note: the placement is
shared between invoker and invoked.

2.6 The Tool URL Manager
The ToolURLManager interface allows creation of ToolURLs that reference the
portlet itself.

Sakai tools assume the Servlet APIs as the basis for generating markup and getting
parameters, yet for presentation inside different portals, the URL encoding API
javax.servlet.http.HttpServletResponse#encodeURL is not sufficient. This is because the
Servlet API treats all URLs the same (hence a single encodeURL method), whereas
portlet technologies such as JSR-168 and WSRP differentiate between URLs based on
what they represent.

There are primarily three different URL types as distinguished by WSRP (JSR 168 has 2,
which is a subset of the three types distinguished by WSRP). The only reasonable way to
allow tools to generate markup that can be presented in a portlet is to have the tools
differentiate the URLs that are embedded in the markup. Some of this can be done
automatically if the URLs are generated using macros or other APIs that allow for this
differentiation to be plugged in underneath.

For instance, most velocity-based tools used different macros for different URL types, so
it is possible to plug the appropriate URL encoding underneath the macros when the tool
is being rendered as a portlet. However, tools that directly access Servlet APIs to generate
markup must use these APIs directly.

Using these APIs is simple. Instead of creating a String URL with the parameters, you
create a ToolURL object. You must specify the URL type (render, action, or resource) to
create a ToolURL object. You can then set the request path and request parameters by
using methods in ToolURL. Finally, to include it in the generated markup, you convert
the ToolURL to a String using the ToolURL#toString method.

Create a URL that is a link back to this Tool
ToolURL createRenderURL(); Create a URL that is a hyperlink back to

this tool. HTTP GET requests initiated by
simple <a href> constructs fall in this
category.

Create a URL that is an action performed on this Tool
ToolURL createActionURL(); Create a URL that is an action performed

on this tool. HTML Form actions that
initiate an HTTP POST back to the tool fall
in this category.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 10 11/9/2005

Create a URL that is a resource for this Tool
ToolURL createResourceURL(); Create a URL for a resource related to the

tool, but not necessarily pointing back to
the tool. Image files, CSS files, JS files etc.
are examples of resource URLs. Paths for
resource URLs may have to be relative to
the server, as opposed to being relative to
the tool.

2.7 The Tool URL API
A ToolURL is used to create a URL and encode it appropriately to the context and
placement of the tool.

Set the path for this URL
void setPath(String path); Set the path for this URL. The path can be

either absolute with respect to the server or
relative to the servlet context in which this
tool is placed.

Set a URL parameter
void setParameter(String name,
String value);

Sets the given String parameter associated
with this URL. This method replaces all
parameters with the given key. An
implementation of this interface may prefix
the attribute names internally in order to
preserve a unique namespace for the tool.

Set an array of URL parameter values
void setParameter(String name,
String[] values);

Sets the given String array parameter to
this URL. This method replaces all
parameters with the given key. An
implementation of this interface may prefix
the attribute names internally in order to
preserve a unique namespace for the tool.

Set URL parameters given a map
void setParameters(Map
parameters);

Sets a parameter map for this URL. All
previously set parameters are cleared. An
implementation of this interface may prefix
the attribute names internally in order to
preserve a unique namespace for the tool.
The Map contains parameters as
name/value pairs. The names in the
parameter map must be of type String. The
values in the parameter map must be of
type String array (String[]).

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 11 11/9/2005

Return a URL string representation
String toString(); Returns the URL string representation to be

embedded in the markup. Note that the
returned String may not be a valid URL, as
it may be rewritten by the portal/portlet-
container before returning the markup to
the client. [Does this mean validation is
necessary?]

2.7.1 URL Tool Request Parameters
Additional request parameters for URL Tools.

Constant Keyword Meaning
MANAGER tool.url.manager Property name to retrieve an instance of

ToolURLManager from an HttpServletRequest.
HTTP_SERVLET
_REQUEST

org.sakaiproject.util
.RequestFilter.http_
request

Property name to set the HttpServletRequest in
a given thread context, to default to when it is
not available to the caller. This allows calling
ToolURLManager's create<Type>URL
with a null HttpRequestServlet, if one has been
set in the current thread context.

We use the same attribute name as set in
org.sakaiproject.util.RequestFilter to prevent
having to depend on RequestFilter class only to
get this attribute.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 12 11/9/2005

3 Default Sakai Implementation
The Tool, Active Tool, and Tool URL Managers are implemented as components in
kernel/tool-component and kernel/active-tool-component. Tool and Placement are
implemented as utilities objects in kernel/tool.

4 Utility Objects
Tool and Placement implementations are coded as utility objects.

The Tool Listener is implemented as a ServletContextListener in the kerne/tool-
registration module-part.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 13 11/9/2005

5 Recommended Practices

5.1 Accessing the Tool Manager
The Sakai Tool Manager can be accessed via its cover or through the Component
Manager.

5.1.1 Access Using the Tool Manager Cover
Use this code fragment to get to the Tool Manager using its cover:

ToolManager tm =
 org.sakaiproject.api.kernel.tool.cover.ToolManager.getInstance();
Tool current = tm.getCurrentTool();

The main trick to using the cover is to import the ToolManager, and use its cover to get
an instance of it. Note the difference in package name for the cover.

5.1.2 Access Using the Component Manager
Alternatively, the Tool Manager can be accessed using the Component Manager:

ComponentManager cm =
 Org.sakaiproject.api.kernel.component.cover.ComponentManager.getInstance();
ToolManager tm =
 (ToolManager) cm.get(“org.sakaiproject.api.kernel.tool.ToolManager”);

The two methods are very similar. In fact, the Tool Manager cover is implemented by
accessing the Component Manager cover.

5.2 Tool Registration
Tools are registered with the Tool Manger by creating a tool description document that
follows the Sakai Tool XML schema with a name corresponding to its ID. In this case the
file would be called “sakai.sample.tools.dash-tool-mgr.xml”.

<registration>
 <tool
 id="sakai.sample.tools.dash-tool-mgr"
 title="Tool Manager Dashboard"
 description="An application to test and show registered tool.">

 <configuration name="integration.property.size" value="[size here]" />
 <category name="sakai.sample" />
 <keyword name="dashboard" />

 </tool>
</registration>

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 14 11/9/2005

The well-known ID of this tool is provided in the ID parameter, followed by a title and
description. Configuration properties can be included as shown. Finally, a category and
keywords can be provided to group this tool with others like it.

In addition to this document, the ToolListener must be included in the web.xml file:

 <listener>
 <listener-class>org.sakaiproject.util.ToolListener</listener-class>
 </listener>

5.3 Finding the Current Tool
See Accessing the Tool Manager above. Once you have a tool manager reference, you
can use it to find the current tool:

ToolManager tm =
 org.sakaiproject.api.kernel.tool.cover.ToolManager.getInstance();
Tool current = tm.getCurrentTool();

5.4 Working With Tool Placements
Tools are often associated with a work site. Since each tool can be used by many such
sites, it is necessary to indicate the existence of a tool in a site. This is handled by Tool
Placement. Each placement acts as if it were a different tool and maintains configuration
information and sessions for each active user.

Tool placement can be defined in the web.xml file as a configuration parameter:

 <filter>
 <filter-name>sakai.request</filter-name>
 <filter-class>org.sakaiproject.util.RequestFilter</filter-class>
 <init-param>
 <param-name>tool.placement</param-name>
 <param-value>tooldash</param-value>
 </init-param>
 </filter>

5.5 Access to Resources
Resources can be included in a tool WAR using xml:

<build>
 <sourceDirectory>src/java</sourceDirectory>
 <resources>
 <resource>
 <directory>${basedir}/src/bundle</directory>
 <includes>

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 15 11/9/2005

 <include>**/*.properties</include>
 </includes>
 </resource>
 </resources>
</build>

In this case, a set of .properties file is included from the “../src/bundle” directory. Once
the resource bundle is included in a component it can be accessed using:

getClass().getClassLoader().getResourceAsStream(“name.properties”);
[This needs to be verified.]

5.6 User Interfaces
As a design rule, Sakai encourages the separation of user interface declaration from the
application code that manages it. This allows certain kinds of adjustments to the UI
(skinning, etc.) to happen without recompiling the code. The following user interface
approaches are currently supported:

 JavaServer Faces – Sun reference implementation
 JavaServer Faces – MyFaces implementation
 Servlet – HTML response

5.6.1 JavaServer Faces
To use JavaServer Faces to present your user interface to a user, you need to set up the
FacesServlet to handle incoming requests. The following web.xml file has commentary
highlighted in blue:
[Verify this against Glenn’s document.]

<servlet> The faces servlets is declared.
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup> 2 </load-on-startup>
</servlet>

<!-- Faces Servlet Mapping -->
This mapping identifies a jsp page as having JSF content. If a
 request comes to the server for foo.jsf, the container will
 send the request to the FacesServlet, which will expect a
 corresponding foo.jsp page to exist containing the content.

<servlet-mapping> Pages ending in .faces.
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
</servlet-mapping>

<servlet-mapping> Pages ending in .jsf.
 <servlet-name>Faces Servlet</servlet-name>

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 16 11/9/2005

 <url-pattern>*.jsf</url-pattern>
</servlet-mapping>

<welcome-file-list>
 This defines two default index files.
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.jsf</welcome-file>
</welcome-file-list>

In addition to the web.xml file, the faces-config.xml file is used to define faces pages and
how they transition from one to another.

<faces-config>
 <managed-bean>
 <description>
 Example backing bean for multiple example pages
 </description>
 <managed-bean-name>examplebean</managed-bean-name>
 <managed-bean-class>example.ExampleBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <navigation-case>
 <from-outcome>index</from-outcome>
 <to-view-id>/index.jsp</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>alphaIndex</from-outcome>
 <to-view-id>/alphaIndex.jsp</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>anchorReference</from-outcome>
 <to-view-id>/anchorReference.jsp</to-view-id>
 <redirect />
 </navigation-case>

 ...
 </navigation-rule>
</faces-config>

An ExampleBean is set up as a managed bean to handle its events. A few navigation rules
are defined, though these are optional if you follow the return string as page name
convention.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 17 11/9/2005

JavaServer Faces (and MyFaces) is a powerful web user interface system. Several good
books are available on JSF which will provide considerably more detail on how to write
JSF applications.

5.6.2 MyFaces

5.6.3 Servlet (HTML Response)

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 18 11/9/2005

6 References
[1.1] Sakai Kernel Bundle – Overview, Mark J. Norton, Sept. 2005 [URL Here]

[1.2] Sakai Kernel Bundle Requirements, Mark J. Norton, Sept. 2005 [URL Here]

 [1.3] SKB Manual – Components, v1, Oct. 9, 2005

[1.4] SKB Manual – Tools, [this document]

[1.5] SKB Manual – Sessions, [to be written]

[1.6] SKB Manual – Requests, [to be written]

[1.7] SKB Manual – Configuration, [to be written]

[1.8] SKB Manual - Context and Thread Safety, [to be written]

[1.9] SKB Manual – Logging and Debugging, [to be written]

[2.1] Sakai’s Component Manager API, Component Packaging, and the Underlying
Spring Implementation, Glenn R. Golden, March 23, 2005 [URL here]

[2.2] Sakai Tools, Glenn R. Golden, July 12, 2005 [URL here]

[2.3] Sakai Request Processing, Glenn R. Golden, July 12, 2005 [URL here]

[2.4] How to Configure Sakai, Glenn R. Golden, July 19, 2005 [URL here]

[2.5] Sakai Sessions, Glenn R. Golden, March 23, 2005 [URL here]

Update all citation numbers to reflect these changes.

Sakai Kernel Bundle Service Manual – Tools

DRAFT Page 19 11/9/2005

7 Document History
This document was created by Mark Norton. It represents research into the Component
Manager (and related) software developed by Glenn Golden of the University of
Michigan and includes many of the concepts initially described by him in [1].

Date Version Who Work
Oct. 10, 2005 1 Mark Norton Initial version of the document. Overview

and introduction. Object and API
definitions. Implementation description.
Utility objects described. System
configuration properties. Initial
recommended practices.

Nov. 2, 2005 2 Mark Norton Edited by ABC. Terminology changes.

