
DRAFT Page 1 11/9/2005

Sakai Kernel Bundle
Service Manual – Components

Date: November 9, 2005
Version: 2

Table of Contents
1 Overview... 2

1.1 Component Definition .. 2
1.2 Component Access.. 2

2 Application Programming Interface ... 4
2.1 The ComponentManager API ... 4
2.2 The ComponentsLoader API .. 5

3 Default Sakai Implementation .. 6
4 Utility Objects... 7

4.1 The ContextLoaderListener Object... 7
4.2 The ComponentMap Object.. 7
4.3 The PropertyOverrideConfigurer Object .. 8

5 Recommended Practices ... 9
5.1 Use the Component Manager.. 9
5.2 Packaging and Registering Components .. 9

5.2.1 API Packaging .. 9
5.2.2 Component Packaging .. 11
5.2.3 Combined Component Packaging... 12
5.2.4 Resource Packaging .. 16

5.3 Getting a Component .. 17
5.4 Coding Services as Singletons – Thread Safety ... 17
5.5 Service Injection ... 18

5.5.1 Service Injection in a Tool.. 18
5.5.2 Service Injection in a Service ... 18

5.6 Configuration Properties... 19
6 References... 20
7 Document History... 21

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 2 11/9/2005

1 Overview
This document describes the Sakai Component Manager and related functions.
Requirements for this service are defined in Sakai Kernel Bundle Requirements [1]. This
document is based, in part, on an earlier description of components by Glenn Golden [3].

Web applications managed by a container like Tomcat are intended to run in isolation;
that is, they do not share code or resources. There are a lot of reasons for this, security
among them. Sakai, however, has a need to share both resources and code between web
applications (Sakai tools).

Sakai refers to any collection of resources and/or code intended to be shared between
Sakai tools as components.

The Sakai Architecture defines a layered, service-based stack of capabilities. Each
service is defined by an application programming interface (API). All access to the
capabilities provided by a service should be done through its API. This is sometimes
referred to as “coding to the interface” and allows the implementation of a service to be
separated from its definition and access points.

Shared Sakai service APIs are deployed to the shared/lib directory of Tomcat as JARs.
Since this directory is automatically in the class path of all Tomcat web applications,
interfaces are readily accessible to them. Implementations of these interfaces must be
loaded at startup time. The Sakai Component Manager (and associated listeners and
loaders) are responsible for loading service implementations and making them accessible
to web applications that desire to use them.

1.1 Component Definition
A Component is a collection of software and/or other resources intended to be accessed
by using the component manager and possibly shared across Sakai applications. A
component is identified by the full name of the API that it implements.

1.2 Component Access
Access to a Sakai service is accomplished using one of three mechanisms:

 Covers
 Component Manager Access
 Injection

Service covers provide access to a service by defining a static version of the service
manager that is globally visible. In general, this static cover includes a getInstance()
method that returns the currently defined implementation of the manager. Depending on
how it is coded, getInstance() may use the Component Manager Access method described
below. The Component Manager cover is an exception to this convention, since it is itself
responsible for managing components (this avoids circularity).

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 3 11/9/2005

Normally, the Component Manager can be used to get an implementation of a Sakai
service. An implementation is found by the Component Manager given an identifier
string. By convention, this identifier string is a fully qualified name of a service interface.
For the SessionManager, the current implementation is bound to the identifier
org.sakaiproject.api.kernel.session.SessionManager.

Methods are provided in the Component Manager to get the current implementation of
this service by providing the identifier.

The preferred service access mechanism is service injection. An application can define a
property in its tool object that is initialized at startup time by the Sakai Component
Manager using the Spring Framework. See Service Injection in the Recommended
Practices section below.

Bundled Resources
In addition to code, resources can also be bundled and shared between applications. This
is purely a convenience mechanism, for example to make it easier to find graphics that
may need to be modified for a new skin, and text strings that need to be translated and
localized.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 4 11/9/2005

2 Application Programming Interface
All of the interfaces, implementations, and objects described here can be found in the
kernel module in the component module-part.

2.1 The ComponentManager API
The Component Manager provides methods that provide access to a singleton object that
corresponds to a component (service, resources, etc.).

Get a Component given a class name
Object get(Class iface); Get the singleton associated with the

interface class provided. This singleton is
an instance of the object that implements
the indicated interface.

Get a Component given an interface name
Object get(String ifaceName); Get the singleton associated with the

interface name provided. This singleton is
an instance of the object that implements
the indicated interface. An example of an
interface name is
org.sakaiproject.api.kernel.session.Session
Manager

Component Exists Given Class Name
boolean contains(Class iface); Returns true if the singleton associated

with the interface class provided is
registered with the Component Manager
and exists.

Component Exists Given Interface Name
boolean contains(String
ifaceName);

Returns true if the singleton associated with
the interface name provided is registered
with the Component Manager and exists. An
example of an interface name is
org.sakaiproject.api.kernel.tool.ToolManager

Get the Set of Registered Components
Set getRegisteredInterfaces(); Returns the set of registered components

currently loaded and available as singleton
objects. This is a set of interface names.
This set can be used to discover the
implementation of a known interface.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 5 11/9/2005

Load an existing Component given its class
void loadComponent(Class iface,
Object component);

In some cases, an instance of a service
implementation may be created by methods
other than the Component Loader. This
method can be used to register this instance
as a singleton and associate it with the
interface class given.

Load an existing Component given its class name
void loadComponent(String
ifaceName, Object component);

In some cases, an instance of a service
implementation may be created by methods
other than the Component Loader. This
method can be used to register this instance
as a singleton and associate it with the
interface name given.

Close the Component Manager
void close(); This method is called to close the

Component Manager. It, in turn, closes the
Spring Application Context.

Get Configuration Properties
Properties getConfig(); This method can be used to access many of

the configuration properties supported by
Sakai. A complete list of configuration
properties is included in Appendix 1 below.

2.2 The ComponentsLoader API
The Component Loader defines a method to load all registered components and create
singleton objects.

Load Components
void load(ComponentManager
mgr, String componentsRoot);

Takes an instance of the component
manager and the file system canonical path
to the directory where component packages
are found. The components root path is
saved as a system property using the key
sakai.components.root:

System.getProperty("sakai.components.r
oot")

System properties do not seem to be fully
implemented at this time. The list of
system properties is essentially the same as
the configuration properties, but all values
are null.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 6 11/9/2005

3 Default Sakai Implementation
The Sakai Component Manager leverages the Spring Framework Application Context
object and the bean definition language. Two levels of context objects are used: a shared
context for all of Sakai, and a local context for each web application. Since each local
context has a reference to the shared context, shared components can be found.

At startup time, Tomcat processes the web.xml file for each web application (Sakai tool,
etc.). If a reference to the SakaiLoaderListener is included in this file, it is invoked by
Tomcat, allowing components to be referenced, injected, etc.

In addition, a special component definition file is consulted and all components defined
are loaded.

Overall, the process looks like this:

1. Components are defined and registered.
2. APIs are deployed to shared/lib.
3. Implementations are deployed to web applications or to a shared component

location.
4. The Component Loader loads all registered components at startup.
5. As tools (web applications) are started, injected services are initialized.
6. Additional runtime access to components is provided by the Component Manager

and static covers.

SpringCompMgr is the default implementation of the ComponentManager interface.
When it is instantiated, the shared application context is created. As web applications are
started up by Tomcat, local application contexts are created and added.

ContextLoader extends org.springframework.web.context.ContextLoader. More
information about application context and threading will be provided in [4].

org.sakaiproject.util.ComponentsLoader – this lives in the kernel/component-loader
module-part. It isn’t clear why this is a utility object and not a component, since it
implements the ComponentLoader interface.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 7 11/9/2005

4 Utility Objects

4.1 The ContextLoaderListener Object
Sakai's extension to the Spring ContextLoaderListener - use our ContextLoader, and
increment / decrement the child count of the ComponentManager on init / destroy.

Create a Context Loader
public createContextLoader()

Initialize root web application Context
public void contextInitialized(ServletContextEvent event)

Close root web application Context
public void contextDestroyed(ServletContextEvent event)

4.2 The ComponentMap Object
ComponentMap exposes the registered components as a map – the component ID is
mapped to the component implementation. This utility object is currently only a partial
implementation of a Map object.

Contains Componet Map key
public boolean
containsKey(Object arg0)

Get Component Map object
public Object get(Object arg0)

The following methods are nonfunctional and should not be used:

 public int size()
 public boolean isEmpty()
 public boolean containsValue(Object arg0)
 public Object put(Object arg0, Object arg1)
 public Object remove(Object arg0)
 public void putAll(Map arg0)
 public void clear()
 public Set keySet()
 public Collection values()
 public Set entrySet()

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 8 11/9/2005

4.3 The PropertyOverrideConfigurer Object
Sakai's extension to the Spring PropertyOverrideConfigurer – allow our dotted bean IDs,
use @ as a separator between the bean ID and the property name.

This could be an extension, just defining a new processKey(), but for the *private*
members that the extension does not have access to...

Get value
public String getValue(String
name)

Access the value of the entry with this
name key.

Ignore invalid keys
public void
setIgnoreInvalidKeys(boolean
ignoreInvalidKeys)

Default is false. If you ignore invalid keys,
keys that do not follow the
beanName.property format will be logged
as warning. This allows you to have
arbitrary other [??] keys in a properties file.

Has property overrides for
public boolean
hasPropertyOverridesFor(String
beanName)

Were there overrides for this bean? Only
valid after processing has occurred at least
once.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 9 11/9/2005

5 Recommended Practices

5.1 Use the Component Manager
Although it is possible to code directly to the Spring Framework, it is recommended that
all Sakai applications access components using declared injection. If direct access to
components is needed, use the Component Manager via its cover or an injected reference.

5.2 Packaging and Registering Components
Components are implementations of an interface (API). Each API (typically a service) is
packaged as JAR and deployed to the shared/lib directory in Tomcat. The following
sections show how APIs, components, and resource bundles are setup and deployed.

5.2.1 API Packaging
The Session Manager provides a good example of how an API is defined for general use
in Sakai. The session manager module-part can be found in “kernel/session” and has a
directory structure that looks like this:

session
 src/java/org/sakaiproject/api/kernel/session
 Session.java
 SessionManager.java
 [etc]
 project.xml

The critical action for packaging an API happens in the project.xml file, which is used by
Maven to build and deploy this code. This example has been edited a bit to show only the
essential parts.

<project>
 <pomVersion>3</pomVersion>
 <name>Sakai Session API</name>
 <groupId>sakaiproject</groupId>
 <id>sakai-session</id>
 <currentVersion>2.0.0</currentVersion>

 <properties>
 <deploy.type>jar</deploy.type>
 <deploy.target>shared</deploy.target>
 </properties>

 <dependencies>
 <dependency>
 <groupId>sakaiproject</groupId>
 <artifactId>sakai-component</artifactId>

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 10 11/9/2005

 <version>${pom.currentVersion}</version>
 </dependency>
 </dependencies>

 <build>
 <sourceDirectory>src/java</sourceDirectory>
 </build>
</project>

Let’s examine the important aspects of this file via its XML tags.

The <name> tag defines the human readable name of this service.
The <groupId> tag defines what group this package will belong to. In particular, this
defines the directory in the local maven repository where it will reside.
The <id> tag is the identifier for this package. This names the directory under the group
directory in the maven repository.
The <version> tag is package version. Sakai tries to keep package identifiers in synch
with releases. This example is taken from the 2.0.0 release of Sakai, therefore. This
version number is very important when creating dependencies as well.

If you concatenate the “id”, “-“, and “version” together, you get the name of the JAR kept
in the maven repository (in the directory defined by id, under groupId). It’s good to know
this when trying to figure out why you are getting errors about being unable to find an
API. This usually comes up as an undefined symbol during the maven build phase.

Next, we define a couple of properties that will be used by maven to determine how to
package this code. In this case, the <deploy.type> is set to “jar”. Tools are deployed as
WARs. The <deploy.target> is set to “shared”, which means the “shared/lib” directory of
Tomcat. By deploying it to this directory, we ensure that this API will be in the classpath
of all web applications in this Tomcat environment.

Project dependencies come next. Here, a dependency on the Component Manager is
defined. It is part of the “sakaiproject” group id, and the component id is “sakai-
component”. The version number is handled by a bit of wizardry in this case by defining
above. This is the common practice in most Sakai API package definitions now.
However, if you need to reference a non-Sakai JAR, you should enter its version number
directly. Thus a dependency on the Apache Commons Loader, would have a group id of
“commons-logging”, an artififact id of “commons-logging” and a version of “1.0.4”.

Finally, maven is directed to look for the java sources of this API in the “src/java”
directory under the module-part, which is “kernel/session” in this example.

When maven encounters this module part (and the project.xml file above), it compiles the
API code, packages it as a JAR, and deploys it to Tomcat/shared/lib where it can be
accessed by all web applications in Sakai.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 11 11/9/2005

5.2.2 Component Packaging
The Session Manager in the Sakai kernel also serves as a good example of how an
implementation is packaged as a component. The session manager component module-
part can be found in “kernel/session-component” and has a directory structure that looks
like this:

Session-component
 src/java/org/sakaiproject/api/kernel/session
 SessionComponent.java
 project.xml

Again the packaging operation for a component happens in the project.xml file, which is
used by Maven to build and deploy this code. This example has been edited a bit to show
only the essential parts.

<project>
 <pomVersion>3</pomVersion>
 <name>Sakai Session API Component</name>
 <groupId>sakaiproject</groupId>
 <id>sakai-session-component</id>
 <currentVersion>2.0.0</currentVersion>

 <properties>
 <deploy.type>jar</deploy.type>
 </properties>

 <dependencies>
 <dependency>
 <groupId>sakaiproject</groupId>
 <artifactId>sakai-session</artifactId>

 <version>${pom.currentVersion}</version>
 </dependency>

 Other dependencies include:
 commons-logging
 sakai-id
 sakai-thread_local
 sakai-util-java
 concurrent
 servletapi

 </dependency>
 </dependencies>

 <build>

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 12 11/9/2005

 <sourceDirectory>src/java</sourceDirectory>
 </build>
</project>

In many ways, this is very similar to the way that API packages are built, with a few
exceptions.

The <name> tag defines the human readable name of this service.
The <groupId> tag defines what group this package will belong to.
The <id> tag is the identifier for this package
The <version> tag is package version.

Next we start to see some differences in how packages are deployed. In the properties
section of the project.xml file above, this component is to be built as a JAR. This could
be built as a WAR, but in this case, all of the kernel components will be bundled later
into a combined component package. Thus, this JAR creation step is intermediate to
building the final component package. This assembly is further described in the next
section.

Implementation dependencies come next. The first dependency (should fully for clarity)
is on the Session Manager API (naturally). Several other dependences for the
implementation are also included (declarations eliminated to save space, have a look at
the code to see the full version).

Finally, maven is directed to look for the java sources of this API in the “src/java”
directory under the module-part, which is “kernel/session-component” in this example.

When maven encounters this module part (and the project.xml file above), it compiles the
API code and packages it as a JAR leaving it in the local target directory. This will
subsequently be collected into a combined component package.

5.2.3 Combined Component Packaging
Certain aspects of a system like Sakai are best kept together for release and development
purposes. Web applications (Sakai Tools) are the obvious example of this (see [5]), but
collections of components are also useful. The combined component package provides
support for this and the Sakai kernel is a good example of it.

The kernel-components directory is laid out like this:

Note that this module-part doesn’t contain any source files. The whole point is to take
code created elsewhere and created a combined package. Let’s have a look at the

kernel-components
 src/java/webapp/WEB-INF
 components.xml
 project.xml

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 13 11/9/2005

project.xml file (once again edited for size) that maven uses to build this combined
package:

<project>
 <pomVersion>3</pomVersion>
 <name>Sakai Kernel Components Package</name>
 <groupId>sakaiproject</groupId>
 <id>sakai-kernel-components</id>
 <currentVersion>2.0.0</currentVersion>

 <properties>
 <deploy.type>components</deploy.type>
 </properties>

 <dependencies>
 <dependency>
 <groupId>sakaiproject</groupId>
 <artifactId>sakai-session-component</artifactId>
 <version>${pom.currentVersion}</version>
 <properties>
 <war.bundle>true</war.bundle>
 </properties>
 </dependency>

 Other dependencies include:
 sakai-id-component
 sakai-configuration
 sakai-thread_local-component
 sakai-tool-component
 sakai-active-tool-component
 commons-id
 concurrent
 sakai-util-xml
 sakai-util-java
 kernel-config-component
 </dependencies>
</project>

If you’ve been reading along, this should start to look familiar to you. The layout of the
maven project is the same starting with name, groupId, id, and version elements.
The <deploy.type> property is a something new, however. In this case, it has a value of
component. This is a signal to maven (via the Sakai maven plugin) to create a combined
component package. Rather than creating a java (JAR) or web (WAR) archive, it creates
a directory in the Tomcat/compoments directory. Each directory here is essentially an
expanded WAR in that it includes a manifest file (describing the pieces of this package)
and a WEB-INF directory that contains a components.xml file and the various
components.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 14 11/9/2005

As before, implementation dependencies come next. These dependencies are defines
much like other maven dependencies with one exception. Each dependency element also
contains a property (war.bundle) that indicates whether this dependence should be
included in the assembled package (expanded WAR) or not. One dependency for sakai-
session-component is included to illustrate how these are declared, followed by a list of
other dependencies. One interesting thing to note is that this list of dependencies
documents what is actually included in the collection of kernel components.

The first dependency (should fully for clarity) is on the Session Manager API (naturally).
Several other dependences for the implementation are also included (declarations
eliminated to save space, have a look at the code to see the full version).

Finally, maven is directed to look for the java sources of this API in the “src/java”
directory under the module-part, which is “kernel/session-component” in this example.

When maven encounters this module part (and the project.xml file above), it combines
the JARs identified by the dependencies and puts them into the combined component
package, “Tomcat/compoments/sakai-kernel-compoments” in this case.

The story is not quite finished at this point, however. When the Component Loader loads
these combined component packages at Tomcat startup time, it needs a way to register
each component implementation to the corresponding API. This is accomplished by the
components.xml file (edited for clarity):

<beans>
 <bean id="org.sakaiproject.api.kernel.config.ServerConfigurationManager"
 class="org.sakaiproject.component.kernel.config.KernelConfigurationService"
 init-method="init"
 destroy-method="destroy"
 singleton="true">
 <property name="registrationPath">
 <value>registration.xml</value>
 </property>
 <property name="toolOrderFile">
 <value>toolOrder.xml</value>
 </property>
 </bean>

 <bean id="org.sakaiproject.api.kernel.id.IdManager"
 class="org.sakaiproject.component.kernel.id.UuidV4IdComponent"
 init-method="init"
 destroy-method="destroy"
 singleton="true">
 </bean>

 <bean id="org.sakaiproject.api.kernel.thread_local.ThreadLocalManager"
 class="org.sakaiproject.component.kernel.thread_local.ThreadLocalComponent"
 init-method="init"

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 15 11/9/2005

 destroy-method="destroy"
 singleton="true">
 </bean>

 <!-- register one component as both the ToolManager & ActiveToolManager -->
 <bean id="org.sakaiproject.api.kernel.tool.ActiveToolManager"
 name="org.sakaiproject.api.kernel.tool.ToolManager
 org.sakaiproject.api.kernel.tool.ActiveToolManager"
 class="org.sakaiproject.component.kernel.tool.ActiveToolComponent"
 init-method="init"
 destroy-method="destroy"
 singleton="true">
 <property name="threadLocalManager">
 <ref bean="org.sakaiproject.api.kernel.thread_local.ThreadLocalManager"/>
 </property>
 </bean>

 <bean id="org.sakaiproject.api.kernel.session.SessionManager"
 class="org.sakaiproject.component.kernel.session.SessionComponent"
 init-method="init"
 destroy-method="destroy"
 singleton="true">
 <property name="idManager">
 <ref bean="org.sakaiproject.api.kernel.id.IdManager"/>
 </property>
 <property name="threadLocalManager">
 <ref
 bean="org.sakaiproject.api.kernel.thread_local.ThreadLocalManager"/>
 </property>
 <property name="inactiveInterval"><value>1800</value></property>
 <property name="checkEvery"><value>60</value></property>
 </bean>

</beans>

While there are a lot of other things going on in this file, the main purpose is to register a
component as a bean using a name that corresponds to the interface used to implement
the component.

All of this happens in the <bean> tag parameters. Each bean element has an id, which
will be used as the registration name (by the Component Manager later). This id should
be the fully qualified interface name,
“org.sakaiproject.api.kernel.config.ServerConfigurationManager” for example. This is
followed by the name of the class that implements it,
“org.sakaiproject.component.kernel.config.KernelConfigurationService”. An initialize
method called “init” is defined and should be called at startup time. And a destroy-
method is defined called “destroy” that will be called at shutdown time. Finally, there is a

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 16 11/9/2005

property that indicates if this should be loaded as a singleton or not, which is true in
virtually all Sakai service cases.

Properties can also be used to provide configuration and other information to the
registered components. In the Configuration Manager, for example, a property is defined
for a tool order file. The value defined here is injected into the
ServerConfigurationService instance at startup time and can be subsequently accessed.
Service references can also be injected. The ThreadLocalManager is injected into several
components above.

5.2.4 Resource Packaging
Just as it’s useful to package components together, it can also be useful to package file-
based resources together as well. The Sakai Kernel Bundle includes an example of
resource packaging in the LoginTool. Resources related to the login page are contained in
the login/bundle module-part:

login/bundle
 src/bundle
 auth.properties
 auth_ko.properties
 auth_zh.properties
 project.xml

This is a bundle of three properties files that contribute to authentication.

The project.xml (edited) file tells maven how to create the package and deploy it:

<project>
 <pomVersion>3</pomVersion>
 <name>Sakai Legacy Bundle</name>
 <groupId>sakaiproject</groupId>
 <id>sakai-legacy-bundle</id>
 <currentVersion>2.0.0</currentVersion>

 <properties>
 <deploy.type>jar</deploy.type>
 <deploy.target>shared</deploy.target>
 </properties>

 <dependencies>
 </dependencies>

 <build>
 <sourceDirectory>src/java</sourceDirectory>

 <!-- other resources for the jar - properties and xml files-->

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 17 11/9/2005

 <resources>
 <resource>
 <directory>${basedir}/src/bundle</directory>
 <includes>
 <include>**/*.properties</include>
 </includes>
 </resource>
 </resources>
 </build>

</project>

The package is defined to be part of the sakaiproject group and has an id of “sakai-
legacy-bundle” indicating that it was originally drawn from the Sakai legacy architecture.
A version number is given.

A property is defined to signal to maven that this package should be built as a JAR and
deployed to “Tomcat/shared/lib”. Deploying it here puts it into the classpath of all Sakai
web applications, including the LoginTool.

Since these are simple files, they have no dependencies.

Finally, the file indicates to maven that the there are resources and they can be found in
the base directory under “src/bundle” and that all property files should be included.

5.3 Getting a Component

While static service covers are available for most of the kernel services, injection is the
recommended method to provide access. This documents the preferred implementation,
but also allows it to be changed without modifying the code.

If service injection is used appropriately, there will be little or no need to directly access
the Component Manager. If needed, however, the Component Manager itself can be
injected [Verify that this is true.] into a tool or service or access via its static cover.

5.4 Coding Services as Singletons – Thread Safety
Implementations of any shared API will be made available to applications via the
Component Manager as threaded singletons. Having a single instance of the code greatly
reduces memory requirements, but does require that it be implemented in a thread safe
manner. Service implementations should give careful consideration to critical regions of
code, shared resources, blocking, and locking. More information will be available in
“SKB Manual – Context and Thread Safety”, [4].

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 18 11/9/2005

5.5 Service Injection
Ideally, objects that need to access Sakai services should be initialized with a reference to
that service when the object is created or instantiated. Sakai uses the Spring Framework
to allow these references to be injected before the object is accessed.

5.5.1 Service Injection in a Tool
Each tool has a web.xml file that defines it as a Tomcat web application. In this web.xml
file, you can create a context parameter:

….
<context-param>
 <param-name>contextSharedLocation</param-name>
 <param-value>
 /WEB-INF/components.xml
 </param-value>
</context-param>
….

The components.xml file is typically used to define beans and properties to be initialized.
The compoments.xml file in turn might look like this:

<beans>

 <bean class="org.sakaiproject.tool.mytool.MyTool"
 init-method="init"
 destroy-method="destroy"
 singleton="true">
 <property name="compMgr">
 <ref bean="org.sakaiproject.api.kernel.component.ComponentManager"/>
 </property>
 </bean>

</beans>

MyTool is written according to JavaBean guidelines. In particular, object properties have
getters and setters with names that correspond to the property name. Here, a property
named “compMgr” is initialized with the Component Manager.

This example needs to be verified with code.

5.5.2 Service Injection in a Service
See Combined Component Packaging above for an example of declared injection into a
service.

Write a simpler example of service inject and describe it here.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 19 11/9/2005

5.6 Configuration Properties

Some are saved via the Sakai configuration system. Others are saved in the system
properties, retrieved via “System.getProperty()”.

Most of the configuration properties are replicated into the System properties, however,
values are not transferred at this time.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 20 11/9/2005

6 References
[1] Sakai Kernel Bundle – Overview, Mark J. Norton, Sept. 2005 [URL Here]

[2] Sakai Kernel Bundle Requirements, Mark J. Norton, Sept. 2005 [URL Here]

[3] Sakai’s Component Manager API, Component Packaging, and the Underlying
Spring Implementation, Glenn R. Golden, March 23, 2005 [URL here]

[4] SKB Manual - Context and Thread Safety, [to be written]

[5] SKB Manual – Tools, [to be written]

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 21 11/9/2005

7 Document History
This document was created by Mark Norton. It represents research into the Component
Manager (and related) software developed by Glenn Golden of the University of
Michigan and includes many of the concepts initially described him in [1].

Date Version Who Work
Sept. 29, 2005 1 Mark Norton Initial version of the document.

Overview and introduction. Interface
definitions. Implementation
description. Utility objects described.
System configuration properties. Initial
recommended practices.

11/9/05 2 Brigid Cassidy Terminology changes; edits.

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 22 11/9/2005

Appendix 1: Configuration Properties

The properties below can be accessed via the ComponentManager.getProperties()
method. This is an aggregated set of properties collected from all installed services. Many
of these properties have no use in the Sakai Kernel Bundle. Others merely serve as
examples on how to include properties (menu collections, in particular).

Copyright Properties

Property Name Typical Value Notes
bottom.copyrighttext (c) 2003, 2004, 2005

sakaiproject.org. All rights
reserved.

Notice that appears at the
bottom of the Sakai portal.

copyrighttype.1 Material is in public
domain.

Copyright menu item 1

copyrighttype.2 I hold copyright. Copyright menu item 2
copyrighttype.3 Material is subject to fair

use exception.
Copyright menu item 3

copyrighttype.4 I have obtained permission
to use this material.

Copyright menu item 4

copyrighttype.5 Copyright status is not yet
determined.

Copyright menu item 5

copyrighttype.6 Use copyright below. Copyright menu item 6
copyrighttype.count 6 Copyright menu item count.
copyrighttype.new Use copyright below.
copyrighttype.own I hold copyright.
default.copyright.alert true Display copyright alert
default.copyright I hold copyright.
newcopyrightinput true

URL Properties

Property Name Typical Value Notes
fairuse.url http://fairuse.stanford.edu Link to the Stanford fair use

description.
myworkspace.info
.url

/library/content/myworkspace_info.h
tml

My workspace info URL.

news.feedURL http://www.sakaiproject.org/cms/ind
ex2.php?option=com_rss&feed=RSS
2.0&no_html=1

News feed (RSS) URL.

accessPath /access
helpPath /help
loggedOutUrl /portal
portalPath /portal

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 23 11/9/2005

powered.url.1 http://sakaiproject.org Powered by Sakai item 1
powered.url.count 1 Powered by Sakai item

count.
server.info.url /library/content/server_info.html Server information URL

(relative link).
serverId Name of this server This is set to the Id of the

current server.
serverName localhost This is set to the name of the

current server.
serverUrl http://localhost:8080 This is the URL to the root

of the current server.
webcontent.instru
ctions.url

/library/content/webcontent_instructi
ons.html

Web content instructions
URL (relative link).

Miscellaneous Properties

activeInactiveUser true
auto.ddl true
container.login false
content.upload.max 20 Upload size limit in

megabytes. ???
hibernate.dialect net.sf.hibernate.dialect.HSQLDi

alect

java.beep false
jdbc.defaultTransactio
nIsolation

java.sql.Connection.TRANSAC
TION_READ_UNCOMMITTE
D

sitesearch.noshow.sitet
ype:

smtp.enabled false
subjectsize 8
version.sakai 2.0.0[506121] Current version of Sakai.
version.service 2.0.0
gatewaySiteId !gateway The gateway site identifier

(legacy site service).

User Interface Properties
iconNames.1: humanities
iconNames.2: engineering
iconNames.3: pig
iconNames.count: 3
iconSkins.1:
iconSkins.2:
iconSkins.3: examp-u
iconSkins.count: 3
iconUrls.1: /library/icon/humanities.gif

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 24 11/9/2005

iconUrls.2: /library/icon/engineering.gif
iconUrls.3: /library/icon/pig.gif
iconUrls.count: 3
powered.alt.1: Powered by Sakai
powered.alt.count: 1
powered.img.1: /library/image/sakai_powered.gif
powered.img.count: 1
skin.default: default
skin.repo: /library/skin
display.users.present: false
editViewRosterSiteType.1: project
editViewRosterSiteType.count: 1
emailInIdAccountInstru: To log in, you must first get a guest account. A guest account is
a special kind of account that is used to give non-Sakai University members access to the
general Sakai University web environment. The Sakai University web environment
includes many tools and services, one of which is Sakai.
emailInIdAccountLabel: Guest(s) Email Address (external participants, e.g.
jdoe@yahoo.com)
emailInIdAccountName: guest
news.title: Sakai News
noEmailInIdAccountLabel: Username(s)
noEmailInIdAccountName: username
notifyNewUserEmail: true
titleEditableSiteType.1: project
titleEditableSiteType.count: 1
top.login: true
ui.institution: Sakai Using Institution
ui.service: Sakai Based Service

Course Management Properties

termendtime.10: 20050801000000000
termendtime.11: 20051201000000000
termendtime.1: 20031201000000000
termendtime.2: 20040501000000000
termendtime.3: 20040801000000000
termendtime.4: 20040801000000000
termendtime.5: 20040801000000000
termendtime.6: 20041201000000000
termendtime.7: 20050501000000000
termendtime.8: 20050801000000000
termendtime.9: 20050801000000000
termendtime.count: 11
termiscurrent.10: false
termiscurrent.11: false
termiscurrent.1: false
termiscurrent.2: false
termiscurrent.3: false

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 25 11/9/2005

termiscurrent.4: false
termiscurrent.5: false
termiscurrent.6: false
termiscurrent.7: false
termiscurrent.8: true
termiscurrent.9: false
termiscurrent.count: 11
termlistabbr.10: Su05
termlistabbr.11: F05
termlistabbr.1: F03
termlistabbr.2: W04
termlistabbr.3: Sp04
termlistabbr.4: SpSu04
termlistabbr.5: Su04
termlistabbr.6: F04
termlistabbr.7: W05
termlistabbr.8: Sp05
termlistabbr.9: SpSu05
termlistabbr.count: 11
termstarttime.10: 20050801000000000
termstarttime.11: 20050901000000000
termstarttime.1: 20030901000000000
termstarttime.2: 20040101000000000
termstarttime.3: 20040501000000000
termstarttime.4: 20040515000000000
termstarttime.5: 20040801000000000
termstarttime.6: 20040901000000000
termstarttime.7: 20050101000000000
termstarttime.8: 20050501000000000
termstarttime.9: 20050515000000000
termstarttime.count: 11
termterm.10: SUMMER
termterm.11: FALL
termterm.1: FALL
termterm.2: WINTER
termterm.3: SPRING
termterm.4: SPRING_SUMMER
termterm.5: SUMMER
termterm.6: FALL
termterm.7: WINTER
termterm.8: SPRING
termterm.9: SPRING_SUMMER
termterm.count: 11
termyear.10: 2005
termyear.11: 2005
termyear.1: 2003
termyear.2: 2004
termyear.3: 2004

Sakai Kernel Bundle Service Manual – Components

DRAFT Page 26 11/9/2005

termyear.4: 2004
termyear.5: 2004
termyear.6: 2004
termyear.7: 2005
termyear.8: 2005
termyear.9: 2005
termyear.count: 11
sitebrowser.termsearch.property: term
sitebrowser.termsearch.type: course
roster.available.weeks.before.term.start: 4
sectionsize: 3
courseSiteType: course
coursesize: 3

Some of the properties included here should be moved to resource bundles where they
can be properly localized.

